K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

=>[(a+d)+(b+c)].[(a+d)-(b+c)]=[(a-d)-(b-c)].[(a-d)+(b-c)]

=>(a+d)- (b+c)= (a-d)- (b-c)= 2ad - 2bc = - 2ad + 2bc => 4ad = 4bc => ad=bc (dpcm)

7 tháng 8 2020

còn ai nữa ko

9 tháng 8 2020

a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)

=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\) 

=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)

=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)

=> a = -2,4 ; b = -1,6 ; c = -0,9

b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)

=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)

=> \(\frac{a}{20}=\frac{b}{18}\)(1)

Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)

Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)

=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)

=>  a = -40 ; b = - 36 ; z = -30

9 tháng 8 2020

a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)

\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)

b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)

 \(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)

Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16

\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)

25 tháng 6 2018

áp dụng tính chất của dãy tỉ số = nhau ta có

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)

\(\Rightarrow a=5\cdot2=10\)

\(\Rightarrow b=5\cdot3=15\)

\(\Rightarrow c=5\cdot4=20\)

\(\Rightarrow d=5\cdot5=25\)

30 tháng 8 2020

cứ làm đi 3 con tích sẽ về ngay tay bn

30 tháng 8 2020

Bài 1:

G/s ngược lại: \(ad=bc\) , ta cần CM giả thiết.

Ta có: \(ad=bc\) => \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) \(\left(k\inℤ\right)\)

Thay vào:

\(\left(a+b+c+d\right)\left(a-b-c+d\right)\)

\(=\left(bk+b+dk+d\right)\left(bk-b-dk+d\right)\)

\(=\left(k+1\right)\left(b+d\right)\left(k-1\right)\left(b-d\right)\) (1)

\(\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(=\left(bk-b+dk-d\right)\left(bk+b-dk-d\right)\)

\(=\left(k-1\right)\left(b+d\right)\left(k+1\right)\left(b-d\right)\) (2)

Từ (1) và (2) => GT được CM => đpcm

14 tháng 10 2019

3a/6=b/3=2c/8=3a-b+2c/6-3+8=22/11=2

a=4

b=6

c=8

caau còn lại tương tự chúc bn hok tôys

19 tháng 10 2021
3,6 = B ba = 2 c phần 8 = 3 - b + AC = 6 - 3 + 8 = 22/11 = 2 a = 4 b = 6 c=8
4 tháng 8 2020

\(a:b:c=5:4:2\)và \(a^2-b^2+c^2=52\)

ta có \(a:b:c=5:4:2\Leftrightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{2}\Leftrightarrow\frac{a^2}{5^2}=\frac{b^2}{4^2}=\frac{c^2}{2^2}\Leftrightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}\)

theo tính chất dãy tỉ số bằng nhau

\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}=\frac{a^2-b^2+c^2}{25-16+4}=\frac{52}{13}=4\)

do đó

\(\frac{a^2}{25}=4\Leftrightarrow a^2=100\Leftrightarrow\hept{\begin{cases}a=10\\a=-10\end{cases}}\)

\(\frac{b^2}{16}=4\Leftrightarrow b^2=64\Leftrightarrow\hept{\begin{cases}b=8\\b=-8\end{cases}}\)

\(\frac{c^2}{4}=4\Leftrightarrow c^2=16\Leftrightarrow\hept{\begin{cases}c=4\\c=-4\end{cases}}\)

vậy các cặp a,b,c thỏa mãn là \(\left\{a=10;b=8;c=4\right\}\left\{a=-10;b=-8;c=-4\right\}\)

5 tháng 8 2020

bạn sad làm đầy đủ hộ mik đc ko mik tích cho

23 tháng 8 2018

\(a:b:c:d=2:3:4:5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)

+) a/2 = 5 => a = 10

+) b/3 = 5 =>  b = 15

+) c/4 = 5 => c = 20

+) d/5 = 5 => d = 25

Vậy,...........

23 tháng 8 2018

a:b:c:d=2:3:4:5

=>\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)

=>\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}\)

Áp dụng tc của dãy tỉ số = nhau,ta có:

\(\frac{3a}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)

=>\(\frac{3a}{6}=5\Rightarrow a=10\)

\(\frac{b}{3}=5\Rightarrow b=15\)

\(\frac{2c}{8}=5\Rightarrow c=20\)

\(\frac{4d}{20}=5\Rightarrow d=25\)

Vậy a=10,b=15,c=20,d=25

=.= hok tốt!!

16 tháng 10 2019

Bài 1:

a) \(x^2\le x\)

\(\Leftrightarrow x^2-x\le0\)

\(\Leftrightarrow x\left(x-1\right)\le0\)

Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)

b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)

\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)

\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)

29 tháng 11 2015

Ta có: a:b:c:d=2:3:4:5

=>\(=>\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=>\frac{3c}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)

=>a/2=5  =>a=5.2=10

=>b/3=5  =>b=5.3=15

=>c/4=5 =>c=5.4=20

d/5=5  =>d=5.5=25