K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chơi trò này đi :)

Ta có cái này : \(a^3+b^3+c^3=3abc\)

Ta đã biết cái này : \(a+b+c=2007\)

Vì ta có cái đã biết kia nên đương nhiên ta sẽ có cái này 

\(a^3+b^3+c^3=2007^3\Leftrightarrow\left(a+b+c\right)^3=2007^3\)

Về cái này : \(a^3+b^3+c^3=3abc\)

Ta thấy : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nên \(\Rightarrow a=b=c\)

Mà cái : \(3abc=2007^3\)

Ta đc : \(a=\frac{2007^3}{3bc}\)

\(b=\frac{2007^3}{3ac}\)

\(c=\frac{2007^3}{3ab}\)

Hoặc như cái này : \(3abc=2007^3\Rightarrow abc=8084294343\)

Thử abc vào đến sáng mai ra thôi.

Hc tốt và tớ lm bừa 

22 tháng 5 2020

@ミ★ɮɾαїŋċɦїℓɗ★彡: Nếu bạn chưa thuộc hết tất cả các hằng đẳng thức thì xin bạn học lại, làm gì có cái chuyện mà a + b + c = 2007 lại có được a3 + b3 + c3 = 20073 được. Không có cái định luật nào như vậy, dù nhânn hay cộng hay làm gì với cả hai vế đi nữa cùng không thể làm ra được ohương tình a3 + b3 + c3 = 20073 được. Và còn nữa. a3 + b3 + c3 khác hoàn toàn với ( a + b + c )3. Nhá bạn. 

Đẳng thức này mới đunsg này,  a + b + c )3 = a3 + b3 + c3 + 3(a + b)(b + c)(a + c).

P/S: Mik sẽ thử làm lại xme nó như thế nào. Vì bài này khá khó, nó xuất hiện vài hằng đẳng thức không như sách giáo khoa. 

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

27 tháng 8 2018

\(a^3+b^3+c^3=3abc\) 

<=>   \(a^3+b^3+c^3-3abc=0\)

<=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>    \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

  Xét:     \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>    \(2a^{ 2}+2b^2+2c^2-2ab-2bc-2ca=0\)

<=>     \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>    \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\) <=>  \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=>   \(a=b=c\)

=>  đpcm

15 tháng 8 2018

1 ) Ta có :

\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)

\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)

\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)

2 ) Ta có :

\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)

\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)

\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)

\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)

\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)

\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)

15 tháng 8 2018

1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :

\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)

16 tháng 1 2021

a3 + b3 + c3 = 3abc 

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

Vì a + b + c ≠ 0

⇒ a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\)⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 ≥ 0 ∀ a,b,c

Dấu "=" xảy ra khi a = b = c

Khi đó \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

17 tháng 1 2021

Từ \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

Thay \(a=b=c\)vào N ta có: \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy \(N=\frac{1}{3}\)

24 tháng 3 2018

         \(a^3+b^3+3abc>c^3\)

\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)

\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)

\(a,\)\(b,\)\(c\)  là 3 cạnh tam giác   

\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)

         \(a^2+b^2+c^2+Ab+ac+bc>0\)  do  a,b,c  >0

suy ra:  \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)

\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)

\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)

P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ

24 tháng 3 2018

Trong một tam giác thì: a + b > c

=>    (a + b)3 > c3

<=>  a3 + b3 + 3ab(a + b) > c3

mà a + b > c => 3ab(a + b) > 3abc

=> a3 + b3 + 3ab(a + b) > a3 + b3 + 3abc > c3

18 tháng 8 2016

\(=\frac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{a^2+2ab+b^2+b^2-2bc+c^2+c^2+2ca+a^2}\)

\(=\frac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2\right)+3ab\left(a-b-c\right)}{\left(a-b-c\right)^2+a^2+b^2+c^2}\)

\(=\frac{\left(\cdot a-b-c\right)\left(a^2+b^2+c^2+ac+ab-bc\right)}{4+a^2+b^2+c^2}\)

\(=\frac{2a^2+2b^2+2c^2+2ab-2bc+2ca}{4+a^2+b^2+c^2}\)

\(=\frac{\left(a-b-c\right)^2+a^2+b^2+c^2}{4+a^2+b^2+c^2}=1\)

k mk nha

10 tháng 8 2018

Hỏi đáp Toán

8 tháng 10 2019

tam giác đều

8 tháng 10 2019

tam giác đều nha.

25 tháng 8 2016

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Dấu bằng xảy ra <=> a+b+c=0 hoặc \(a^2+b^2+c^2-ab-ac-bc=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> a=b=c