Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thuyết suy ra:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{38}=0\)(Tính chất dãy tỷ số bằng nhau)
\(\Leftrightarrow\hept{\begin{cases}\frac{3a-2b}{5}=0\\\frac{2c-5a}{3}=0\\\frac{5b-3c}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{11}=-\frac{50}{11}\)
Tự làm tiếp nha........
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}}\)=> \(\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}}\)=> \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}\)=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> a = -5.2 = -10
b = -5.3 = -15
c = -5.5 = -25
Câu hỏi của Nguyễn thị thanh mai - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Bạn tham khảo bài của ST nha:
Câu hỏi của Nguyễn thị thanh mai - Toán lớp 7 - Học toán với OnlineMath
Học tốt
Ta có :
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)
\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0
=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(\Rightarrow\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{a}{2}=\frac{c}{5}\\\frac{b}{3}=\frac{c}{5}\end{cases}}\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau.........
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)
Mà a+b+c+d khác 0
=> b+c+d = a+c+d = b+a+d = c+b+a
=> b = a = c = d
Ta có:
\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)
\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)
\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)
\(P=1-1-1-1=-2\)