K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MT
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
16 tháng 12 2018
a) \(a^2+b^2+1\ge ab+a+b\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra <=> a=b=1.
b) \(a^2-2a+6b+b^2=-10\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\). Mà \(\left(a-1\right)^2\ge0;\left(b+3\right)^2\ge0\forall a;b\)
Nên \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}}\). KL: ...
TH
0