\(a;b\) để \(P\left(x\right)⋮Q\left(x\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Ta có \(P\left(x\right)\equiv\left(ax-3x\right)+\left(b+2\right)[modQ\left(x\right)]\)

Mà: \(P\left(x\right)⋮Q\left(x\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ax-3x=0\\b+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

Vậy \(a=3;b=-2\)

Chúc bạn học tốt!

8 tháng 3 2017

\(\left[{}\begin{matrix}A\left(x\right)=x^4-3x^3+ax+b=x^2\left(x^2-3x+4\right)+\left[\left(a-4\right)x+b\right]=B\left(x\right)+f\left(x\right)\left(a\right)\\A\left(x\right)=x^4-3x^3+ax+b=x^2\left(x^2-3x+2\right)+\left[\left(a-2\right)x+b\right]=C\left(x\right)+g\left(x\right)\left(b\right)\end{matrix}\right.\)

a) \(A\left(x\right)⋮B\left(x\right)\Rightarrow f\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}a=4\\b=0\end{matrix}\right.\)

b)\(A\left(x\right)⋮C\left(x\right)\Rightarrow g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

9 tháng 2 2018

\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)

\(\left(2-3x\right)=0\)

\(\left(x^2+2x+3\right)=0\)

\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)

\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\) 

b) \(3x-3x=5+2\) ( vô nghiệm)

c) vô nghiệm

d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

vậy ...

x=1

x=-6

E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được

\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được

\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )

tích = 0 

vậy ....

F)  trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)

phá trị tuyệt đối ta được

\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)

\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )

tích = 0 suy ra 2 TH vậy .....

g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử  chứ làm = tay vừa dài vừa hại não :)

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)

\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)

\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4

\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)

vậy....

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

giúp mk với tứ tư mk phải nộp rùi bài 1: a, \(2x\left(3x^2-5x+3\right)\) b, \(-2x\left(x^2+5x-3\right)\) c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\) bài 2: a,\(\left(2x-1\right).\left(x^2-5-4\right)\) b,\(-\left(5x-4\right).\left(2x+3\right)\) c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\) d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\) e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\) bài 3: c/m rằng gtri của...
Đọc tiếp

giúp mk với tứ tư mk phải nộp rùi

bài 1:

a, \(2x\left(3x^2-5x+3\right)\)

b, \(-2x\left(x^2+5x-3\right)\)

c, \(\dfrac{-1}{2}x\left(2x^3-4x+3\right)\)

bài 2:

a,\(\left(2x-1\right).\left(x^2-5-4\right)\)

b,\(-\left(5x-4\right).\left(2x+3\right)\)

c,\(\left(2x-y\right).\left(4x^2-2xy+y^2\right)\)

d,\(\left(3x-4\right).\left(x+4\right).\left(5-x\right).\left(2x^2+3x-1\right)\)

e,\(7\left(x-4\right)-\left(7x+3\right).\left(2x^2-x+4\right)\)

bài 3:

c/m rằng gtri của biểu thức ko phụ thuộc vào gtri của biến

a,\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

b,\(3\left(2x-1\right)-5\left(x-3\right)+6\left(3x-4\right)-19x\)

bài 4 :tìm x biết

a, \(3x+2\left(5-x\right)=0\)

b,\(x\left(2x-1\right).\left(x+5\right)-\left(2x^2+1\right).\left(x+4,5\right)=3,5\)

c,\(3x^2-3x\left(x-2\right)=36\)

d,\(\left(3x^2-x+1\right).\left(x-1\right)+x^2.\left(4-3x\right)=\dfrac{5}{2}\)

4
11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

25 tháng 11 2019

b. (x2-0,5):2x-(3x-1)2:(3x-1)=0

<=> \(\frac{1}{2}\)x-0,25-3x+1=0

<=>\(-\frac{5}{2}\)x+0,75=0

<=> \(-\frac{5}{2}\)x=-0,75

<=> x=0,3

chúc bạn học tốt

25 tháng 11 2019

\(a.\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=4\)

\(\Leftrightarrow\left(x^2+x+5x+5\right)\left(x^2+4x+2x+8\right)=4\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=4\)

\(\text{Đặt a = }x^2+6x+5\text{ }\Rightarrow\text{ }a+3=x^2+6x+8\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow a^2+4a-a-4=0\)

\(\Leftrightarrow a\left(a+4\right)-\left(a+4\right)=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x^2+6x+9\right)-5\right]=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-5\right]=0\)

\(\text{Hoặc }\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(\text{Hoặc }\left(x+3\right)^2-5=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\hept{\begin{cases}x+3=\sqrt{5}\\x+3=-\sqrt{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}}\)

\(\text{Vậy }x\in\left\{-3;\sqrt{5}-3;-\sqrt{5}-3\right\}\)