Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
ta có :\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
mà ta có: \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\forall a,b,c\)
dấu \("="\) xảy ra \(\Leftrightarrow a=b=c\)
lại có:\(a^8+b^8+c^8=3\) mà \(a=b=c\)
\(\Rightarrow a^8+a^8+a^8=3\)
\(\Leftrightarrow a^8=1\)
\(\Leftrightarrow a=1\)
vậy \(a=b=c=1\)
\(\left\{{}\begin{matrix}a+b=100\\a-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\a-b=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\100-b-b=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\2b=64\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=100-b\\b=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=68\\b=32\end{matrix}\right.\)
a: góc B=180-130=50 độ
góc D=180-60=120 độ
b: góc A+góc D=180 độ
góc A-góc D=40 độ
=>góc A=(180+40)/2=110 độ và góc D=110-40=70 độ
góc B=3*góc C
góc B+góc C=180 độ
=>góc B=3/4*180=135 độ
góc C=180-135=45 độ
Bài 2:
c: Ta có: \(\left(x+3\right)\left(x-7\right)+\left(5-x\right)\left(x+4\right)=10\)
\(\Leftrightarrow x^2-7x+3x-21+5x+20-x^2-4x=10\)
\(\Leftrightarrow-3x-1=10\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (1)
Thay a+b=7 và ab=12 vào (1) ta được:
\(\left(a-b\right)^2=7^2-4.12=49-48=1\)
Vậy:.....
b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\) (2)
Thay a-b=6 và ab = 3 vào (2) ta được:
\(\left(a+b\right)^2=6^2+4.3=36+12=48\)
Vậy:....
c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (3)
Thay ab = 6 và a+b = -5 vào (3) ta được:
\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)
Vậy......
\(\Leftrightarrow2x^3+6x^2-x^2-3x+6x+18+m-13⋮x+3\)
hay m=13
Bài 2:
a: \(x^2\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
b: \(x^8+36x^4=0\)
\(\Leftrightarrow x^4=0\)
hay x=0
a(b+3)-b(3+b)
=(3+b)(a-b)
Thay số, có: (3+1997).(2003-1997)
= 2000.6 =12000
xy(x+y)-2x-2y
xy(x+y)- 2(x+y)
(x+y).(xy-2)
Thay số, co: 7. (8-2)
7.4=28
a) \(x^2+3x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b) \(x^2-2x-1=0\Leftrightarrow\left(x-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{matrix}\right.\)
a: Ta có: \(x^2+3x-4=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
ta có: a+b=35 suy ra a=35-b
a*b=300 suy ra a=300:b
35-b=300:b
suy ra b*(35-b)=300
35b-b^2=300
suy ra 35b-b-300=0
-b^2+35b-300=0
-(b^2-35b+300)=0
-(b^2-2b17,5+17,5^2+300-17,5^2)=0
-(b-17,5)^2-6,25=0
6,25-(b-17,5)^2=0
2,5^2-(b-17,5)^2=0
(2,5-b+17,5)(2,5+b-17,5)=0
(20-b)(15-b)=0
20-b=0 b=20
hoặc 15-b=0 b=15
nếu b=20 thì a=15
nếu b=15 thì a=20
vậy a=15 ; b=20 hay ngược lại
a = 20 ; b = 15
a = 15 ; b = 20