Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}\Rightarrow\frac{2a}{6}=\frac{3b}{24}=\frac{c}{5}=\frac{2a+3b-c}{6+24-5}=\frac{50}{25}=2\)
=> a/3 = 2 => a = 6
=> b/8 = 2 => b = 16
=> c/5 = 2 => c = 10
Đặt \(\frac{a}{3}=\frac{b}{8}=\frac{c}{5}=k\Rightarrow a=3k;b=8k;c=5k\)
=> \(2a+3b-c=6k+24k-5k=50\)
=> \(25k=50\Rightarrow k=2\)
=> \(\hept{\begin{cases}a=3\cdot2=6\\b=8\cdot2=16\\c=5\cdot2=10\end{cases}}\)
Câu hỏi của Lê Nguyễn Minh Hằng - Toán lớp 7 | Học trực ... - Hoc24
a)\(\frac{2a+8}{5}-\frac{a}{5}=\frac{a+8}{5}\)
Để \(\frac{2a+8}{5}-\frac{a}{5}\in Z\) thì: \(a+8\in B\left(5\right)\)
b)\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}\)
\(=\frac{-6a-18}{a+3}+\frac{10}{a+3}=\frac{-6.\left(a+3\right)}{a+3}+\frac{10}{a+3}=-6+\frac{10}{a+3}\)
Để: \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\in Z\) thì:
\(a+3\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>a = -2;-4;-1;-5;2;-8;7;-13
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
a) \(3a=4b\Rightarrow\frac{a}{4}=\frac{b}{3}\)
Áp dụng dãy tỉ số bằng nhau , có : \(\frac{a}{4}=\frac{b}{3}=\frac{b-a}{3-4}=\frac{5}{-1}=-5\)
\(\Rightarrow a=-5\cdot4=-20\)
\(\Rightarrow b=-5\cdot3=-15\)
b) Từ \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{6}=\frac{b}{4}\) (1)
Tương tự : \(3b=4c\Rightarrow\frac{b}{4}=\frac{c}{3}\)(2) ;
Từ (1) và (2) ta có : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b+c}{6-4+3}=\frac{35}{5}=7\)
\(\Rightarrow a=7\cdot6=42\)
\(\Rightarrow b=7\cdot4=28\)
\(\Rightarrow c=7\cdot3=21\)
c) \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{a}{40}=\frac{b}{48}\) ; \(\frac{b}{8}=\frac{c}{7}\Rightarrow\frac{b}{48}=\frac{c}{42}\)
\(\Rightarrow\frac{a}{40}=\frac{b}{48}=\frac{c}{42}\)
Áp dụng t/c dãy tỉ số = nhau : \(\frac{a}{40}=\frac{b}{48}=\frac{c}{42}=\frac{a+b-c}{40+48-42}=\frac{69}{46}=\frac{3}{2}\)
\(\Rightarrow a=\frac{3}{2}.40=60\)
\(\Rightarrow b=\frac{3}{2}.48=72\)
\(c=\frac{3}{2}.42=63\)
a/5 = b/-3 = c/2
<=> 2a/10=b/-3=3c/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
2a/10=b/-3=3c/6=2a+b+3c/10-3+6 = -39/13 = -3
=> 2a = -30 => a = -15.
b=-3.(-3) = 9
3c = -3.6 = -18 => c = -6.
\(\frac{a}{5}=\frac{b}{-3}=\frac{c}{2}=\frac{2a}{10}=\frac{3c}{6}=\frac{2a+b+3c}{10+\left(-3\right)+6}=\frac{-39}{13}=-3\)
\(\frac{a}{5}=-3\Rightarrow a=-15\)
\(\frac{b}{-3}=-3\Rightarrow b=9\)
\(\Rightarrow\frac{c}{2}=-3\Rightarrow c=-6\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{5}=\frac{b}{8}=\frac{2a-b}{2.5-8}=\frac{12}{2}=6\)
=> a/5 = 2 => a = 10
=> b/8 = 2 => b = 16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/5=b/8=2a-b/2.5-8=12/2=6
Suy ra a/5=2 suy ra a=10
b/8=2 suy ra b=16