\(\ne\)0; a,b\(\inℕ\)  (ab)2=(b-1)aab

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

(ab)2=(b-1)aab

=>2ab=aabb-aab

=>aabb=2ab-aab

=>aabb=ab(2-b)

=>ab(ab)=ab(2-b)

=>2-b=ab

=>ab+b=2

=>a(b+1)=2

=>a;b+1\(\in\)Ư(2)={1;-1;2;-2}

Ta có bảng sau

a12-2-1
b+121-1-2
a12-2-1
b10-2-3

Vì a;b thuộc N=>(a;b) thuộc (1;1);(2;0)

8 tháng 8 2019

Để a+b nhỏ nhất thì a,b nhỏ nhất 

Do \(a-b\ne0\) nên \(a\ne b\)\(ab\ne\frac{a}{b}\) nên \(b\ne1\)\(\Rightarrow\)\(a\ne1\)\(a-b>0\)\(\Rightarrow\)\(a>b\)

\(\frac{a}{b}\inℕ^∗\)\(\Rightarrow\)\(a⋮b\)

Từ những điều kiện trên => a nhỏ nhất khi a=2b 

loại a=4 và b=2 vì ko thoả mãn \(a-b\ne\frac{a}{b}\)

=> a,b nhỏ nhất khi a=6 và b=3 => a+b=9 thoả mãn đk 

22 tháng 6 2020

Bài làm:

a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)

b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)

c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)

Học tốt!!!!

22 tháng 6 2020

1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

9 tháng 12 2018

Bài 1 :

Lý luận chung cho cả 2 câu a) và b) :

Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0

a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

26 tháng 2 2020

đạt ơi tớ cũng vừa gửi giống cậu

26 tháng 2 2020

vì 0 < a < 5 < b; a, b

=> a < b

Vì phân số \(\frac{b}{a}\) có tử lớn hơn mẫu

=>b/a > 1

25 tháng 2 2018

a. Ta có

\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)

\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)

\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)

Cộng vế với vế của 1;2 ta được

\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)

hay A>B

Làm ơn giúp mk, mk đang cần gấp!!!

12 tháng 3 2017

Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)

\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)

\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)

\(=\dfrac{bc+b+1}{bc+b+1}=1\)

Vậy S = 1

12 tháng 3 2017

Thay \(abc=105\) ta có:

\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)

\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)

Vậy \(S=1\)

2 tháng 9 2020

ta có số a,b lớn nhất là 9                     ta có số a,b bé nhất là 1                             . = nhân

ta có 2020.9+9/2020.9-9                       ta có 2020.1+1/2020.1-1

=2020.18/2020.0                                  =2020.2/2020.0

=38360 => m lớn nhất =38360                 =4040 => m bé nhất =4040