Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)
\(=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\) \(\left(abc=105\right)\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}\)
\(=1\)
3, Gọi d là thương.
Theo đề ra ta có:
\(\dfrac{1\overline{abc}}{\overline{abc}}=d\) (dư 3)
\(\Rightarrow1000+\overline{abc}=\overline{abc}.d+3\)
\(\Rightarrow1000=\overline{abc}.\left(d-1\right)+3\)
\(\Rightarrow\overline{abc}.\left(d-1\right)=997\)
Vì 997 là số nguyên tố và \(\overline{abc}\) có 3 chữ số \(\Rightarrow\overline{abc}=997\)
1) x +3 / x+1
Để x + 3/ x +1 nguyên thì :
x + 3 phải chia hết cho x + 1
=> x + 1 + 2 chia hết cho x + 1
=> x +1 chia hết cho x + 1
2 chia hết cho x +1
=> x + 1 thuộc Ư(2)
Lập bảng :
x + 1 | -1 | 1 | 2 | -2 |
x | -2 | 0 | 1 | -3 |
Vậy x = { -2;-3;0;1}
a,
\(\dfrac{13}{17}=1-\dfrac{4}{17}\\ \dfrac{25}{29}=1-\dfrac{4}{29}\\ \dfrac{4}{17}>\dfrac{4}{29}\Rightarrow1-\dfrac{4}{17}< 1-\dfrac{4}{29}\Leftrightarrow\dfrac{13}{17}< \dfrac{25}{29}\)
Vậy \(\dfrac{13}{17}< \dfrac{25}{29}\)
b,
\(\dfrac{59}{101}>\dfrac{56}{101}>\dfrac{56}{105}\\ \Rightarrow\dfrac{59}{101}>\dfrac{56}{105}\)
Vậy \(\dfrac{59}{101}>\dfrac{56}{105}\)
c,
\(\dfrac{14}{55}>\dfrac{14}{56}=\dfrac{1}{4}=\dfrac{20}{80}>\dfrac{20}{83}\)
Vậy \(\dfrac{14}{55}>\dfrac{20}{83}\)
Bài 1:
\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\\ =\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1\)
Bài 2:
\(\frac{a}{5}+1=\frac{1}{b-1}\\ \Rightarrow \frac{a+5}{5}=\frac{1}{b-1}\\ \Rightarrow (a+5)(b-1)=5\)
Vì $a,b$ là số tự nhiên nên $a+5, b-1$ là số nguyên. Mà tích của chúng bằng 5 nên $a+5$ là ước của $5$ (1)
Vì $a$ là số tự nhiên nên $a+5$ là số tự nhiên và $a+5\geq 5$ (2)
Từ $(1); (2)\Rightarrow a+5=5$
$\Rightarrow a=0$
$b-1=\frac{5}{5}=1\Rightarrow b=2$
3. a) Ta có : 13.29 = 377
25.17 = 425
=> \(\dfrac{13}{17}< \dfrac{25}{29}\)
b) Ta có : 59.105 > 56.101
=> \(\dfrac{59}{101}>\dfrac{56}{105}\)
c) Ta có : 14.83 = 1162
20.55 = 1100
=> \(\dfrac{14}{55}>\dfrac{20}{83}\)
d) Ta có : 13.73 = 949
29.57 = 1653
=> \(\dfrac{13}{57}< \dfrac{29}{73}\)
e) Ta có : \(\dfrac{1717}{2121}=\dfrac{17}{21}\)
=> \(\dfrac{17}{21}=\dfrac{1717}{2121}\)
@Đặng Vũ Hoài Anh
4. Gọi các phân số cần tìm có dạng \(\dfrac{x}{3}\)
Ta có : \(\dfrac{-1}{2}< \dfrac{x}{3}< \dfrac{1}{2}\)
=> \(\dfrac{-3}{6}< \dfrac{2x}{6}< \dfrac{3}{6}\)
=> -3 < 2x < 3
=> 2x = -2; 0; 2
=> x = -1; 0; 1 (thỏa mãn)
@Đặng Vũ Hoài Anh
Ta có: \(S=\dfrac{105}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+105}\)
\(=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{a}{a\left(b+1+bc\right)}\)
\(=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{bc+b+1}\)
\(=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy S = 1
Thay \(abc=105\) ta có:
\(S=\dfrac{abc}{abc+ab+a}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)
\(\Rightarrow S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+bc}\)
\(\Rightarrow S=\dfrac{bc+b+1}{bc+b+1}=1\)
Vậy \(S=1\)