Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : \(\frac{a}{3}=\frac{b}{4}=k\)=> \(\hept{\begin{cases}a=3k\\b=4k\end{cases}}\) (*)
Khi đó, ta có: ab = 48
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2\)
Thay \(k=\pm2\) vào (*), ta được :
\(\hept{\begin{cases}a=3.\left(\pm2\right)=\pm6\\b=4.\left(\pm2\right)=\pm8\end{cases}}\)
Vậy ...
Đặt \(\frac{a}{3}=k\rightarrow a=3k\)
\(\frac{b}{4}=k\rightarrow b=4k\)
Ta có: a.b = 48
<=> 3k.4k = 48
<=> 12k^2 = 48
<=> k^2 = 4
<=> k = \(\pm2\)
Với k = 2 -> a = 3 . 2 = 6; b = 4 . 2 = 8
Với k = -2 -> a = 3 . (-2) = -6; b = 4 . (-2) = -8
Vậy a = 6 hoặc a = -6
b = 8 hoặc b = -8
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!
3a/6=b/3=2c/8=3a-b+2c/6-3+8=22/11=2
a=4
b=6
c=8
caau còn lại tương tự chúc bn hok tôys
a:4 = b:7 và a.b = 28
=> \(\frac{a}{4}=\frac{b}{7}=\frac{a.b}{4.7}=\frac{28}{28}=1\)
=> \(\frac{a}{4}=1\Rightarrow a=1\times4\div1=4\)
=> \(\frac{b}{7}=1\Rightarrow b=1\times7\div1=7\)
Vậy a - b = 4 - 7 = -3
a:4=b:7
suy ra a/4=b/7
đặt a/4=b/7=k
suy ra a=4k:b=7k
thay vào a.b =28
tìm đc k rồi tìm đc a;b
Đặt a/3=k=>a=3k
b/4=k=>b=4k
Ta có: a.b=48
<=> 3k.4k=48
<=> 12k^2=48
<=> k^2=4
<=> k=2 hoặc k=-2
Với k=2=>a=3.2=6; b=4.2=8
Với k=-2=>a=3.(-2)=-6; b=4.(-2)=-8
Vậy a=6 hoặc -6
b=8 hoặc -8
Cách #:
Ta có: \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{ab}{3b}=\dfrac{48}{3b}\)
\(\Rightarrow\dfrac{b}{4}=\dfrac{48}{3b}\Rightarrow b\cdot3b=48\cdot4\Rightarrow3b^2=192\)
\(\Rightarrow b^2=\dfrac{192}{3}=64\Rightarrow\left[{}\begin{matrix}b=8\\b=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=\dfrac{48}{8}=6\\a=\dfrac{48}{-8}=-6\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right);\left(-6;-8\right)\)
Ta có: \(\frac{a}{3}=\frac{b}{4}\Leftrightarrow\frac{ab}{3b}=\frac{48}{3b}\)
\(\Rightarrow\)\(\frac{b}{4}=\frac{48}{3b}\Rightarrow b.3b=48.4\Rightarrow3b^2=192\)
\(\Rightarrow\)\(b^2=\frac{192}{3}=64\Rightarrow\orbr{\begin{cases}b=8\\b=-8\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}a=\frac{48}{8}=6\\a=\frac{48}{-8}=-6\end{cases}}\)
Vậy \(\left(a;b\right)=\left(6;8\right);\left(-6;-8\right)\)
Ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{ab}{3b}=\frac{48}{3b}\)
\(\Rightarrow\frac{48}{3b}\Rightarrow b.3b=48.4\Rightarrow3b^2=192\)
\(\Rightarrow b^2=\frac{192}{3}=64\orbr{\begin{cases}b=8\\b=-8\end{cases}}\)
\(\orbr{\begin{cases}a=\frac{48}{8}=6\\a=\frac{48}{-8}=-6\end{cases}}\)
Vậy : \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right)\)