Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.vì ƯCLN 2 số là 28 nên đặt a=28k, b=28p, k,p là số tự nhiênta có 28(k+p)=224=>k+q=8vậy các cặp (a, b) thỏa mãn là (28,196), (56, 168), (84,140), (112, 112)và các hoán vị của nó.
2.Dựa vào dữ kiện đề bài,ta có:
a=18k;b=18p.(k,p nguyên tố cùng nhau)
Tích:a.b=18k.18p
=324.k.p=1944
=>k.p=6.
=>k bằng 3;p=2.
Vậy a=54;p=36.
3.ĐK a > 12 ( số chia phải lớn hơn dư )
156 chia a dư 12 => 156 - 12 chia hết cho a => 144 chia hết cho a (1)
280 chia a dư 10 => 280 - 10 chia hết cho a => 270 chia hết cho a (2)
Từ (1) và (2) => 144 ; 270 chia hết cho a
=> a thuộc UC (144;270)
UCLN ( 144 ; 270 ) = 18
=> a thuộc ( 18 ; 9 ; 6 ; 3 ; 1 )
a > 12 => a= 18
\(1,\\ a,\left(3x-2\right)\left(2y-3\right)=1\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2=1\\2y-3=1\end{matrix}\right.\\\left\{{}\begin{matrix}3x-2=-1\\2y-3=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=1\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left(x;y\right)=\left\{\left(1;2\right);\left(\dfrac{1}{3};1\right)\right\}\)
\(b,\left(2x+1\right)\left(y-3\right)=10\)
Ta có bảng
\(2x+1\) | 1 | 2 | 5 | 10 | \(-1\) | \(-2\) | \(-5\) | \(-10\) |
\(y-3\) | \(10\) | \(5\) | \(2\) | \(1\) | \(-10\) | \(-5\) | \(-2\) | \(-1\) |
\(x\) | 1 | \(\dfrac{1}{2}\) | 2 | \(\dfrac{9}{2}\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-3\) | \(-\dfrac{11}{2}\) |
\(y\) | 13 | 8 | 5 | 4 | \(-7\) | \(-2\) | 1 | 2 |
Vậy \(\left(x;y\right)=...\)
Do thương hai phép chia bằng nhau ta có
\(\frac{a-6}{37}=\frac{a-18}{31}\Rightarrow a=80\)
kho..............wa...................troi................thi......................ret.....................ai..............tich...............ung.....................ho....................minh..................voi................ret............wa
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a chia b bằng 3 dư 37 => a bằng 3 lần b và thêm 37 đơn vị
Ta có sơ đồ:
b = (481 - 37)/4 = 111
a = 3 x 111 + 37 = 370