Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
gọi UCLN(n+1;3n+4) là d
ta có :
n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d
=>3n+4 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1;3n+4 là hai số nguyên tố cùng nhau
Theo đề bài ta có:
\(ƯCLN\)\(\left(a,b\right)=18\)
\(\Rightarrow a=18m\left(m\in N^{\circledast}\right)\text{và }b=18n\left(n\in N^{\circledast}\right)\)
\(a\cdot b=1944\\ \Leftrightarrow18m\cdot18n=1944\\ \Leftrightarrow\left(18\cdot18\right)\cdot\left(m\cdot n\right)=1944\\ \Leftrightarrow324\cdot mn=1944\\ \Leftrightarrow mn=6\\ \)
m | 1 | 2 | 3 | 6 |
n | 6 | 3 | 2 | 1 |
a | 18 | 36 | 54 | 108 |
b | 108 | 54 | 36 | 18 |
ƯCLN(a,b) | 18 | 18 | 18 | 18 |
Vậy ta có 4 cặp số a,b là 18,108; 36,54; 54,36; 108,18
Đặt a = 18a', UWCLN(a', b') = 1.
Ta có 18a'.18b' = 1944
\(\Rightarrow\) a'.b' = 1944 : (18.18) = 6.
Do a' > b' và ƯCLN(a', b') = 1 nên
a' | 6 | 3 |
b' | 1 | 2 |
suy ra
a | 108 | 54 |
b | 6 | 36 |
1.vì ƯCLN 2 số là 28 nên đặt a=28k, b=28p, k,p là số tự nhiênta có 28(k+p)=224=>k+q=8vậy các cặp (a, b) thỏa mãn là (28,196), (56, 168), (84,140), (112, 112)và các hoán vị của nó.
2.Dựa vào dữ kiện đề bài,ta có:
a=18k;b=18p.(k,p nguyên tố cùng nhau)
Tích:a.b=18k.18p
=324.k.p=1944
=>k.p=6.
=>k bằng 3;p=2.
Vậy a=54;p=36.
3.ĐK a > 12 ( số chia phải lớn hơn dư )
156 chia a dư 12 => 156 - 12 chia hết cho a => 144 chia hết cho a (1)
280 chia a dư 10 => 280 - 10 chia hết cho a => 270 chia hết cho a (2)
Từ (1) và (2) => 144 ; 270 chia hết cho a
=> a thuộc UC (144;270)
UCLN ( 144 ; 270 ) = 18
=> a thuộc ( 18 ; 9 ; 6 ; 3 ; 1 )
a > 12 => a= 18