Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Đặt \(a=6k+2;b=6m+3\)
Ta có:
\(ab=\left(6k+2\right)\left(6m+3\right)=36km+18k+12m+6⋮6\left(đpcm\right)\)
Gọi số nhỏ nhất cần tìm là a (a\(\in\)N*)
Vì a chia 3 dư 1; chia 4 dư 3; chia 5 dư 1 nên
a - 1 chia hết cho 3
a - 3 chia hết cho 4 \(\Rightarrow\) a - 3 + 4= a - 1 chia hết cho 4
a - 1 chia hết cho 5
\(\Rightarrow\) a - 1 \(\in\) BC( 3; 4; 5)= { 0; 60; 120; 180;.......}
Vì a là số tự nhiên nhỏ nhất nên a = 60.
Vậy số tự nhiên nhỏ nhất cần tìm là 60
câu trả lời đúng là 31.
bạn trả lời ở trên là sai vì a - 3 + 4 không bằng a - 1 đâu nha
Ta có: 100a là số chính phương
mà: \(100a=10^2a\)
=> a là số chính phương
Đặt \(a=k^2\)với k thuộc N
a chia hết cho 6 => k^2 chia hết cho 6=> k^2 chia hết cho 2 và chia hết cho 3
Vì 2, 3 là 2 số nguyên tố => k chia hết cho 2 và 3 => k chia hết cho 6
Mặt khác a là số nguyên dương nhỏ nhất thỏa mãn các điều kiện trên đề bài
=> k =6 ( k khác 0 vì a là số nguyên dương)
=> a=k^2=36
\(\text{Gọi số tự nhiên đó là }a\)
\(\text{Ta có:}a=13x+8=19y+14=23z+18\left(\text{x;y;z là các số tự nhiên}\right)\)
\(\Rightarrow a+5=13\left(x+1\right)=19\left(y+1\right)=23\left(z+1\right)\)
\(\Rightarrow a+5\text{ chia hết cho 13;19;23 ta sẽ chọn a+5 nhỏ nhất nên:}a+5=BCNN\left(13;19;23\right)=5681\)
\(\Rightarrow a=5676\)
gọi số cần tìm là a
theo bài ra ta có:
a+5 chia hết cho 13,19,23; a+5 nhỏ nhất
=> a+5= BCNN(13,19,23)
Mà BCNN(13,19,23)=5681
=> a+5=5681
a=5681-5
a=5676
Vậy số cần tìm là 5676
Bài 1:
Đặt G(x)=0
\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)
=>(5x-1)(3x-1)=0
=>5x-1=0 hoặc 3x-1=0
=>x=1/5 hoặc x=1/3
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301