Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc đề em gõ bị lỗi nhỏ :) Cô sẽ sửa nhé :)
a. ĐK: \(a\ge0,a\ne4\)
\(H=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{a+\sqrt{a}-6}=\frac{a-4-4-\sqrt{a}-3}{a+\sqrt{a}-6}\)
\(=\frac{a-\sqrt{a}-12}{a+\sqrt{a}-6}=\frac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
b. \(H< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\Leftrightarrow\frac{\sqrt{a}-4}{\sqrt{a}-2}-2< 0\Leftrightarrow\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}< 0\)
\(\Leftrightarrow\frac{-\sqrt{a}}{\sqrt{a}-2}< 0\Leftrightarrow\sqrt{a}-2>0\Leftrightarrow x>4\)
Tương tự với các câu còn lại nhé :)
a)\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-4}\left(ĐKXĐ:x\ne4;x\ge0\right)\)
\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\left(x-4\right)\)
\(=2\sqrt{x}\)
b)Tại A=6 ta có:\(2\sqrt{x}=6\)
\(\Leftrightarrow\sqrt{x}=3\)
\(\Rightarrow x=9\)
c)Tại A<4 ta đc:\(2\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Rightarrow x< 4\)
\(\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)
\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{\sqrt{a}-2}-\frac{2}{\sqrt{a}-2}< 2\)
\(\Leftrightarrow\)\(1-\frac{2}{\sqrt{a}-2}< 2\)
\(\Leftrightarrow\)\(\frac{2}{\sqrt{a}-2}>1\)
\(\Leftrightarrow\)\(2:\frac{2}{\sqrt{a}-2}< 2:1\)
\(\Leftrightarrow\)\(\sqrt{a}-2< 2\)
\(\Leftrightarrow\)\(\sqrt{a}< 4\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a< 4^2=16\\a>-4^2=-16\end{cases}}\)
Vậy để \(H< 2\) thì \(a< 16\) hoặc \(a>-16\)
Chúc bạn học tốt ~