Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại a thỏa mãn đề bài
Có a^2+31a+1984=x^2 (x thuộc N)
suy ra 4a^2+124a+7936=4x^2
suy ra (2a+62)^2+4092=4x^2
suy ra (2x-2a-62)(2x+2a+62)=4092
suy ra (x-a-31)(x+a+31)=1023
Từ đây bạn phân tích thành nhân tử rồi giải thôi
Chúc bạn học tốt!
Em tham khảo link :
Câu hỏi của Nguyen Cao Diem Quynh - Toán lớp 8 | Học trực tuyến
a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)
\(=\left(a^2+8a+11\right)^2\)
b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)
\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)
\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)
\(=\left(a^2-5ab+5b^2\right)^2\)
Em tham khảo câu c) ở linkCâu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS
Bài làm:
Đặt \(a^2+a+43=x^2\)
\(\Leftrightarrow4a^2+4a+172=4x^2\)
\(\Leftrightarrow\left(4a^2+4a+1\right)+171=4x^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=4x^2\)
\(\Leftrightarrow4x^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2x-2a-1\right)\left(2x+2a+1\right)=171=1.171=3.57=9.19\)
Ta thấy \(4x^2-\left(2a+1\right)^2=171\Rightarrow2x>2a+1\), mà x là số tự nhiên nên
=> \(\hept{\begin{cases}2x-2a-1>0\\2x+2a+1>0\end{cases}}\Rightarrow2x-2a-1< 2x+2a+1\)
Ta xét các TH sau:
+ Nếu: \(\hept{\begin{cases}2x-2a-1=1\\2x+2a+1=171\end{cases}}\Rightarrow4a+2=170\Leftrightarrow4a=168\Rightarrow a=42\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=3\\2x+2a+1=57\end{cases}\Rightarrow}4a+2=54\Leftrightarrow4a=52\Rightarrow a=13\)
+ Nếu: \(\hept{\begin{cases}2x-2a-1=9\\2x+2a+1=19\end{cases}}\Rightarrow4a+2=10\Leftrightarrow4a=8\Rightarrow a=2\)
Vậy \(a\in\left\{2;13;42\right\}\) thì a2+a+43 là số chính phương
bạn đặt mỗi biểu thức = 1 số bình phương ví dụ là x^2
ở câu a bn đặt xong nhân 4 lên sau đó biến đổi về 1 hằng đẳng thức
câu b thì đưa chữ sang 1 vế số sang 1 vế
câu c làm tương tự câu a