K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

có gì pm

buồn ngủ

27 tháng 11 2018

Để x4 + ax3 + b ⋮ x2 - 1 thì :

x4 + ax3 + b = ( x2 - 1 ) . Q

x4 + ax3 + b = ( x - 1 ) ( x + 1 ) . Q

Vì đẳng thức đúng với mọi x nên :

+) đặt x = 1 ta có :

14 + a . 13 + b = ( 1 - 1 ) ( 1 + 1 ) . Q

1 + a + b = 0

a + b = -1 (1)

+) đặt x = -1 ta có :

( -1 )4 + a . ( -1 )3 + b = ( -1 - 1 ) ( -1 + 1 ) . Q

1 - a + b = 0

-a + b = -1 (2)

Từ (1) và (2) ta giải hệ pt được a = 0 và b = -1

Vậy.......

27 tháng 11 2018

Cảm ơn nha

22 tháng 11 2018

a. đặt tính

x4-2x3-2x2+ax+b /  x2-3x+2

x4-3x3                     x2+x+1

     x3-2x2+ax+b

     x3-3x2+2x

          x2+(a-2)x+b

          x2-3x+2

=> để f(x) chia hết cho g(x) =>\(\orbr{\orbr{\begin{cases}a-2=-3=>a=-1\\b=2\end{cases}}}\)

b. làm tương tự câu a

19 tháng 10 2021

Đề sai rồi bạn

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé

22 tháng 7 2019

Ta có: \(\frac{P\left(x\right)}{Q\left(x\right)}=\frac{x^4+x^3-2x^2+ax+b+x^2}{x^2+x-2}=x^2+\frac{x^2+ax+b}{x^2+x-2}\) 

Để P(x)\(⋮\) Q(x)

\(\Rightarrow x^2+ax+b⋮x^2+x-2\) 

\(\Rightarrow a=1;b=-2\) 

Vậy.......