Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\c=bk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{k^2\left(b^2+c^2\right)}{b^2+c^2}=k^2\)
và \(\frac{a}{b}=\frac{ck}{\frac{c}{k}}=k^2\)
Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Theo tính chất dãy tỉ số bằng nhau
Ta có : a phần 2 =b phần 3 =a2-b2+2c2 phần 4-9+4=108 phần 9 =12
suy ra a=12x2=24
suy ra b=12x3=36
suy ra c =12x4=48
Vậy a=24
b=36
c=48
search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......
Dễ thể mà không ai trả lời
1)\(A=\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{c+a}\Leftrightarrow a\left(a+b\right)=c\left(c+a\right)=b\left(b+c\right)\Leftrightarrow a=b=c\)Do a = b = c nên ta có thể thế b + c =2a , a+b = 2c, c + a = 2b
Ta có: \(A=\dfrac{a}{2a}=\dfrac{b}{2b}=\dfrac{c}{2c}=\dfrac{1}{2}\) . Do đó \(A=\dfrac{1}{2}\)
2) Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) . Cần chứng minh: \(\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\dfrac{a}{d}\)
Từ giả thiết suy ra a = b = c =d
Theo giả thiết,áp dụng t/c dãy tì số bằng nhau.Ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{a}{d}=1\)
Do đó \(\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=1^3=1=\dfrac{a}{d}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi và chỉ khi a = b =c = d