K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2014

cos a= 15/13 => a=67,3801

cos a= 15/17 =>a =28,072

cos a= 0,6 => a= 53,13

(nếu bạn muốn hỏi cách tính như thế nào thì hỏi nhé)

13 tháng 10 2014

cảm ơn bạn nhiều . nhưng ở bài này tinh ra thành phân số cơ

minh muốn hoi thêm bạn bài này nữa :tam giac ABC có góc a = 20 độ , gócB=30 độ,AB=60cm. đường vuông góc kẻ từ C đến AB tại P.hãy tìm AP,BP,CP

6 tháng 10 2021

Ko biết làm

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

\(\widehat{C}=\widehat{BAH}(=90^0-\widehat{HAC})\)

Mà theo định nghĩa công thức cos: \(\cos \widehat{BAH}=\frac{AH}{AB}\) nên \(\cos C=\frac{AH}{AB}\)

Câu a đúng.

\(\sin \widehat{HAC}=\sin \widehat{ABH}=\frac{AH}{AB}=\cos C\)

Câu b đúng

\(\cos C=\sin \widehat{ABH}=\sin B=0,6\)

Câu c đúng

Hiển nhiên câu d sai.

21 tháng 8 2018

bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)

\(\Rightarrow cosa=\pm\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)

bài 2)

ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)

b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)

c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)

\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)

ý 2 :

ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)

ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)

\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)

vậy ............................................................................

bài 3 bạn tự luyện tập như bài 2 cho quen nha :)

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

6 tháng 7 2018

bài này không có giới hạn góc sao tìm được bạn .

NM
18 tháng 7 2021

ta có 

\(sin^2x+cos^2x=1\Leftrightarrow sin^2x=1-cos^2x=1-0.6^2=0.64\)

TH1.\(sinx=\sqrt{0.64}=0.8\Rightarrow\hept{\begin{cases}tanx=\frac{sinx}{cosx}=\frac{0.8}{0.6}=\frac{4}{3}\\cotx=\frac{1}{tanx}=\frac{3}{4}\end{cases}}\)

TH2.\(sinx=-\sqrt{0.64}=-0.8\Rightarrow\hept{\begin{cases}tanx=\frac{sinx}{cosx}=\frac{-0.8}{0.6}=-\frac{4}{3}\\cotx=\frac{1}{tanx}=-\frac{3}{4}\end{cases}}\)

a: \(\sin a=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

\(\tan a=\dfrac{12}{5}\)

b: \(\sin a=\sqrt{1-\left(\dfrac{15}{17}\right)^2}=\dfrac{8}{17}\)

\(\tan a=\dfrac{8}{15}\)

c: \(\sin a=\sqrt{1-0.6^2}=0.8\)

nên \(\tan a=\dfrac{4}{3}\)