Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
^_^
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
A = a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2
Vậy A = 1/2
k mk nha
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)( đpcm )
b) Nếu \(a+b+c=0\)\(\Rightarrow b+c=-a\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=-1\)
Nếu \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
a) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\b=kc\\c=kd\end{cases}}\)
Ta có : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{kb+kc+kd}{b+c+d}\right)^3=\left(\frac{k\left(b+c+d\right)}{b+c+d}\right)^3\)
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này :
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
bài này dễ mà
ta có a(a+b+c)+b(a+b+c)+c(a+b+c)=\(\frac{-1}{24}\)+\(\frac{1}{16}\)+\(\frac{-1}{72}\)=\(\frac{1}{144}\)
hay (a+b+c)2=\(\frac{1}{144}\)
=> a+b+c=\(\frac{1}{12}\)
rồi từ dó tự làm dc rồi nha
Câu hỏi của Thao Chuot - Toán lớp 7 - Học toán với OnlineMath
Bạn xem bài làm ở link này nhé!
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)
Ta có : \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}\\\frac{b}{12}=\frac{c}{15}\end{cases}\Rightarrow}\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2}\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a=16\\b=24\\c=30\end{cases}}\)
Ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\) và \(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow a=2.8=16\) \(b=12.2=24\) \(c=15.2=30\)
Vậy \(a=16;b=24;c=30\)
Ta có : \(\frac{b}{a}=2\Leftrightarrow b=2a\)và \(\frac{c}{b}=3\Leftrightarrow c=3b=3\cdot2a=6a\)
Do đó \(\frac{a+b}{b+c}=\frac{a+2a}{2a+6a}=\frac{3a}{8a}=\frac{3}{8}\)
Vậy \(\frac{a+b}{b+c}=\frac{3}{8}\)
Ta có \(A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\) --->\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)
--->\(\frac{a+b+c}{b+c}=\frac{c+a+b}{a+b}=\frac{b+c+a}{c+a}\)
Nên:\(b+c=a+b=c+a\)
Với \(b+c=a+b\)--->\(c=a\)
Với\(a+b=c+a\)--->\(b=c\)
Từ đó suy ra: \(a=b=c\)--->\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}=\frac{1}{2}\)\(=A\)
A=\(\frac{a+b+c}{\left(b+c\right)+\left(a+b\right)+\left(c+a\right)}\)
A=\(\frac{a+b+c}{2\left(a+b+c\right)}\)
=>A=0
=>A=\(\frac{1}{2}\)