K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

a. Ta có \(A=\frac{3\sqrt{x}}{\sqrt{x}-3}=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}-3}+\frac{9}{\sqrt{x}-3}\)

\(=3+\frac{9}{\sqrt{x}-3}\)

\(A\in Z\Rightarrow\sqrt{x}-3\inƯ\left(9\right)\Rightarrow\sqrt{x}-3\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4;6;12\right\}\Rightarrow x\in\left\{0;4;16;36;144\right\}\)

Vậy \(x\in\left\{0;4;16;36;144\right\}\)thì \(A\in Z\)

b. Thay \(x=7-4\sqrt{3}\Rightarrow A=\frac{3\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}-3}\)

\(=\frac{3\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-3}=\frac{3\left(2-\sqrt{3}\right)}{2-\sqrt{3}-3}=\frac{15-9\sqrt{3}}{2}\)

29 tháng 10 2023

a: Khi x=6 thì \(A=\dfrac{4}{6-3}=\dfrac{4}{3}\)

b: \(B=\dfrac{4x}{x^2-9}-\dfrac{x-3}{x+3}\)(ĐKXĐ: \(x\notin\left\{3;-3\right\}\))

\(=\dfrac{4x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x-3}{x+3}\)

\(=\dfrac{4x-\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4x-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}=\dfrac{-x^2+10x-9}{\left(x+3\right)\left(x-3\right)}\)

 

 

Bài 1: 

Để B nguyên thì \(3x+1⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(4\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{2;0;3;-1;5;-3\right\}\)

Bài 2: 

a: Ta có: \(P=\dfrac{x^2-9}{x^2-6x+9}\)

\(=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{x+3}{x-3}\)

b: Để P nguyên thì \(x+3⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{4;2;5;1;6;0;9;-3\right\}\)

2 tháng 11 2019

a) \(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\left[\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

c) để A>1/3 

\(\Rightarrow\frac{\sqrt{x}+3-2}{\sqrt{x}+3}>\frac{1}{3}\)

\(\Rightarrow\frac{2}{\sqrt{x}+3}>\frac{2}{3}\)

\(\Rightarrow\sqrt{x}+3>3\)

\(\Rightarrow x>0\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

a: \(P=\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-1\)

\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1-x-\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để \(P^2>P\) thì P(P-1)>0

\(\Leftrightarrow\left[{}\begin{matrix}P>1\\P< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}>0\\\sqrt{x}-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)