Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a/b = 2/3 => a2/b2 = 2.2/3.3 = 4/9
a2 + b2 = 208
a2 = 208 : (4 + 9).4
a2 = 208 : 13.4
a2 = 16.4
a2 = 64
=> a = 8
=> b = 8 : 2/3 = 12
Ta có \(\frac{a}{b}=\frac{2}{3}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{2}{3}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{4}{9}\)
Theo tính chất của tỉ lệ thức thì ta có \(\frac{a^2}{4}=\frac{b^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{a^2+b^2}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow\hept{\begin{cases}a^2=16.4=64\\b^2=16.9=144\end{cases}}\)
Vì \(\frac{a}{b}=\frac{2}{3}\) nên a, b cùng âm hoặc cùng dương.
Vậy \(\orbr{\begin{cases}a=8,b=12\\a=-8,b=-12\end{cases}}\)
1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155
\(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{3}=\frac{b}{3}\)
\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{a^2+b^2}{4+9}=\frac{208}{13}=16\)
\(\Rightarrow a^2=4.16=64\Rightarrow a=8\) (vì \(a\in N\)*)
\(b^2=9.16=144\Rightarrow b=12\) (vì \(b\in N\)*)
Giải:
Ta có: \(\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k,b=3k\)
Mà \(a^2+b^2=208\)
\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=208\)
\(\Rightarrow2^2.k^2+3^2.k^2=208\)
\(\Rightarrow k^2.\left(2^2+3^2\right)=208\)
\(\Rightarrow k^2.13=208\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=\pm4\)
Mà \(a,b\in\) N*
\(\Rightarrow k=4\)
\(\Rightarrow a=8,b=12\)
Vậy \(a=8,b=12\)