Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$ab=ƯCLN(a,b).BCNN(a,b)$
$\Rightarrow 9000=ƯCLN(a,b).900$
$\Rightarrow ƯCLN(a,b)=10$.
Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
$BCNN(a,b)=10xy=900$
$\Rightarrow xy=90$
Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:
$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$
Từ đây bạn dễ dàng tìm được $a,b$
b.
$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$
Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=6xy=60$
$\Rightarrow xy=10$
Do $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,10), (2,5), (5,2), (10,1)$
Từ đây dễ dàng tìm được $a,b$
Ta có :
\(\left(a,b\right).\left[a,b\right]=a.b=\left(a,b\right).60=360\)
\(\Leftrightarrow\left(a,b\right)=6\)
\(\left(a,b\right)=6\Leftrightarrow\left\{{}\begin{matrix}a=6a_1\\b=6b_2\end{matrix}\right.\) \(\left(\left(a_1;b_1\right)=1\right)\)
Lại có :
\(a.b=360\)
\(\Leftrightarrow6a_1.6b_1=360\)
\(\Leftrightarrow36.a_1.b_1=360\)
\(\Leftrightarrow a_1.b_1=10\)
Ta có bảng :
\(a\) | \(a_1\) | \(b_1\) | \(b\) | \(đk\) \(a,b\in N\) |
\(6\) | \(1\) | \(10\) | \(60\) | \(tm\) |
\(60\) | \(10\) | \(1\) |
\(6\) | \(tm\) |
\(12\) | \(2\) | \(5\) | \(30\) | \(tm\) |
\(30\) | \(5\) | \(2\) | \(12\) | \(tm\) |
Vậy ..
Tìm a,b biết:
a) a . b = 240; BCNN(a,b) = 60
b) a . b = 360; (a,b) = 6
c) ƯCLN(a,b) = 6; BCNN(a,b) = 60
Vì ƯCLN(a,b)=6;BCNN(a,b)=60
=>a.b=360
nên ta đặt :a=6.a'
b=6.b'
Với (a',b')=1 ta có : a.b=360=>6a'.6b'=360=>36a'b'=360
=>a'b'=10
mà (a',b')=1, ta có bảng sau :
a' | 1 | 2 | 5 | 10 |
b'=10:a' | 10 | 5 | 2 | 1 |
a=6a' | 6 | 12 | 30 | 60 |
b=6b' | 60 | 30 | 12 | 6 |
Vậy (a,b)=(6;60);(12;30);(30;12);(60;6).
a,Vì BCNN(a,b)=60=>ƯCLN(a;b)=4
nên ta đặt a=4.a'
b=4.b'
(a',b')=1,ta có : 4a'.4b'=240=>16a'b'=240
=>a'b'=15
mà (a,'b')=1
Vậy (a,b)=(4;60);(20;12);(60;4);(12;20)
\(\left[a;b\right]\) là BCNN nhé.
\(ƯCLN\left(a;b\right)=\frac{a.b}{\left[a,b\right]}=\frac{360}{60}=6\)
Đặt \(a=6a_1,b=6b_1\) (a1,b1 là 2 số nguyên tố cùng nhau)
Ta có: \(a.b=360\Rightarrow6a_1.6b_1=360\Rightarrow a_1.b_1=10\)
Từ đó ta có các trường hợp \(\left(a_1;b_1\right)\in\left\{\left(1;10\right),\left(2;5\right),\left(5;2\right),\left(10;1\right)\right\}\)
Mà \(a=6a_1,b=6b_1\)
Nên \(\left(a;b\right)\in\left\{\left(6;60\right),\left(12;30\right),\left(30;12\right),\left(60;6\right)\right\}\)