Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
Ta có : a + 5b \(⋮\) 7
=> 10a + 50 b \(⋮\) 7
10a + b + 49b \(⋮\) 7
Mà 49b \(⋮\) 7 ( vì 49 \(⋮\) 7 )
=> 10a + b \(⋮\) 7
Sửa đề: chứng minh \(S\ge6\)
Ta có:
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)
\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)
\(\Rightarrow\)ĐPCM
Đây nè k cho mình nha:
Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)
\(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)
\(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)
Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy S > 2
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do \(A⋮13\Rightarrow10A⋮13\)
Mà \(39b⋮13\) nên B = \(10a+b⋮13\left(đpcm\right)\)