Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tất cả đều mũ chẳn nên lớn hơn hoặc bằng 0 => để thõa mãn các tổng cộng lại bằng 0 => mỗi tổng bằng 0
a, Vì \(\hept{\begin{cases}\left(12a-9\right)^2\ge0\\\left(8b+1\right)^4\ge0\\\left(c+15\right)^6\ge0\end{cases}\Rightarrow\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\ge0}\)
Mà \(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+15\right)^6\le0\)
\(\Rightarrow\hept{\begin{cases}\left(12a-9\right)^2=0\\\left(8b+1\right)^4=0\\\left(c+15\right)^6=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{-1}{8}\\c=-15\end{cases}}}\)
b, tương tự a
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
a) Ta có:
+) a/2=b/3
=>a=2b/3
+) b/5=c/4
=>c=4b/5
Lại có:
a-b+c=49
=> 2b/3 -b + 4b/5 =49
=> 7b/15==49
=> b= 105
Khi đó:
+) a=2b/3=2.105/3=70
+)c=4b/5=4.105/5=84
Vậy a=70; b=105; c=84...
chúc bạn học tốt
\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
a, \(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{4+6}}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b,\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}\)
c, \(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}\)
d, \(\frac{6^3+3.6^2+3^3}{-13}=\frac{\left(2.3\right)^3+3\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}\)
\(=\frac{2^3.3^3+3^3.2^2+3^3}{-13}=\frac{3^9\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=3^3=27\)
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
Ta thấy: \(\left(7b-3\right)^4\ge0\forall b\)
\(\left(21a-6\right)^4\ge0\forall a\)
\(\left(18c+5\right)^6\ge0\forall c\)
\(\Rightarrow\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6\ge0\forall a;b;c\)
Mặt khác: \(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6\le0\)
\(\Rightarrow\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(7b-3\right)^4=0\\\left(21a-6\right)^4=0\\\left(18c+5\right)^6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7b-3=0\\21a-6=0\\18c+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{3}{7}\\a=\dfrac{2}{7}\\c=-\dfrac{5}{18}\end{matrix}\right.\)
#Urushi☕
a = 2/7
b = 3/7
c = -5/18