Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
a) \(\frac{790^4}{79^4}=\frac{79^4.10^4}{79^4}=10^4=10000\)
b) \(\frac{3^2}{0,375^2}=\frac{0,375^2.8^2}{0,375^2}=8^2=64\)
c) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}=3^2.3^{-5}.3^8.3^{-3}=3^2=9\)
d) \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)=2^7:\left(2^3.2^{-4}\right)=2^7:2^{-1}=2^7:\frac{1}{2}=2^8\)
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)