\(\sqrt{a-1}\)+ 4\(\sqrt{b+3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

Ta có : \(a+b+15=6\sqrt{a-1}+4\sqrt{b+3}\)(ĐK : \(a\ge1;b\ge-3\))

<=> \(\left(a-1-6\sqrt{a-1}+9\right)+\left(b+3-4\sqrt{b+3}+4\right)=0\)

<=> \(\left(\sqrt{a-1}-3\right)^2+\left(\sqrt{b+3}-2\right)^2=0\)

<=> \(\hept{\begin{cases}\sqrt{a-1}-3=0\\\sqrt{b+3}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-1=9\\b+3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=10\\b=1\end{cases}}\)

Vậy a = 10 ; b = 1

29 tháng 3 2019

Bài 1

a) \(A=\left(4-\sqrt{15}\right)\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\sqrt{\left(4-\sqrt{15}\right)\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}.\left(\sqrt{5}+\sqrt{3}\right).\sqrt{2}=\sqrt{\left(4-\sqrt{15}\right).\left(16-15\right).2}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{8-2\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{5-2\sqrt{5}.\sqrt{3}+3}.\left(\sqrt{5}+\sqrt{3}\right)=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Ta có công thức tổng quát\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

Vậy \(B=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{15}+\sqrt{16}}=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{16}-\sqrt{15}=\sqrt{16}-\sqrt{1}=4-1=3\)

b) \(6x^4-7x^2-3=0\Leftrightarrow6x^4-9x^2+2x^2-3=0\Leftrightarrow3x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\Leftrightarrow\left(2x^2-3\right)\left(3x^2+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}2x^2-3=0\\3x^2+1=0\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow\)\(2x^2-3=0\Leftrightarrow2x^2=3\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\frac{\pm\sqrt{6}}{2}\)

Vậy S={\(\frac{-\sqrt{6}}{2};\frac{\sqrt{6}}{2}\)}

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

28 tháng 6 2019

a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))

=\(\sqrt{2006}^2-\sqrt{2005}^2\)

=2006-2005

=1

13 tháng 7 2016

a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)

\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)

\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)

b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)

\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)

C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)

\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)

\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)

\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)

d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)

\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)

e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

hay x=-1

b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\)

=>x-1=16

hay x=17

19 tháng 11 2016

a,\(\left(\sqrt{6}-\sqrt{10}\right)\sqrt{4+\sqrt{15}}=\sqrt{6}.\sqrt{4-\sqrt{15}}-\sqrt{10}.\sqrt{4+\sqrt{15}}\)

=\(\sqrt{24+6\sqrt{15}}-\sqrt{40+10\sqrt{15}}=\sqrt{\left(\sqrt{15}+3\right)^2}-\sqrt{\left(\sqrt{15}+5\right)^2}\)

=\(\sqrt{15}+3-\sqrt{15}-5=-2\)

b,\(\left(\sqrt{3}+\sqrt{30}\right)\sqrt{10-\sqrt{41-4\sqrt{10}}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40-2\sqrt{40}+1}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{\left(\sqrt{40}-1\right)^2}}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{10-\sqrt{40}+1}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{11-2\sqrt{10}}=\sqrt{3}\left(1+\sqrt{10}\right)\sqrt{\left(\sqrt{10}-1\right)^2}\)

=\(\sqrt{3}\left(1+\sqrt{10}\right)\left(\sqrt{10}-1\right)=9\sqrt{3}\)

2,\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}\left(1-\sqrt{a}\right)-\sqrt{a}+4}{1-a}\right)\)

\(A=\left(\frac{a+\sqrt{a}-a-2}{\sqrt{a}+1}\right):\left(\frac{\sqrt{a}-a-\sqrt{a}+4}{1-a}\right)=\left(\frac{\sqrt{a}+2}{\sqrt{a}+1}\right).\left(\frac{1-a}{4-a}\right)\)

\(A=\frac{\sqrt{a}-2}{\sqrt{a}+1}.\frac{a-1}{a-4}=\frac{\sqrt{a}-1}{\sqrt{a}+2}\)

b, ̣để \(A=\frac{1}{2}\Rightarrow\frac{\sqrt{a}-1}{\sqrt{a}+2}=\frac{1}{2}\Leftrightarrow2\sqrt{a}-2=\sqrt{a}+2\Leftrightarrow\sqrt{a}=4\Leftrightarrow a=16\left(t.m\right)\)

19 tháng 11 2016

Bạn oi bài 2 hàng A thú 2 phải là \(\frac{\sqrt{a}-2}{\sqrt{a}+1}\) mình nhầm

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

NV
16 tháng 9 2019

Bài 1:

a/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{2x-1}-3=0\)

\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}+\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)

\(\Rightarrow x=5\)

b/ĐKXĐ:...

\(x-1+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow x-1+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

NV
16 tháng 9 2019

Bài 2:

\(A=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)

\(=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

\(B=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left(3-\sqrt{6}\right)+\left(2\sqrt{6}-3\right)\)

\(=\sqrt{6}\)

\(C=\left(\frac{3+\sqrt{5}-3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right).\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}\)

\(=\frac{2\sqrt{5}}{4}.\frac{1}{\sqrt{5}}=\frac{1}{2}\)

4 tháng 10 2018

Bài 1:

a)Ta có:\(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}-\sqrt{5-2\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{2}-\sqrt{5}+1=-\sqrt{2}+1\)

b)Ta có:\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\left(\sqrt{10}-\sqrt{6}\right)=\sqrt{4+\sqrt{15}}.1.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)