\(\dfrac{2}{3}\) số thứ nhất bằng \(\dfrac{3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi ba số lần lượt là a,b,c

Theo đề, ta có: 2/3a=3/4b=1/3c

=>8a=9b=4c

=>a/9=b/8=c/18

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{18}=\dfrac{a+b+c}{9+8+18}=\dfrac{20}{35}=\dfrac{4}{7}\)

Do đó: a=36/7; b=32/7; c=72/7

17 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)^2\)=\(\dfrac{4}{9}=\left(\dfrac{2}{3}\right)^2=\left(\dfrac{-2}{3}\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=\dfrac{-2}{3}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)
b)\(|x+\dfrac{97}{306}|\)\(\)\(+5=-1\)
\(\Leftrightarrow|x+\dfrac{97}{106}|=-1-5=-1+\left(-5\right)=-6\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
Bài 2: Gọi 3 số lần lượt là a,b,c(a,b,c<481)
Ta có: \(a^2+b^2+c^2=481\left(1\right)\)
\(\dfrac{4}{3}a=b\Leftrightarrow a=\dfrac{3b}{4}\left(2\right)\)
\(\dfrac{3}{4}c=b\Leftrightarrow c=\dfrac{4b}{3}\left(3\right)\)
Từ \(\left(1\right),\left(2\right)va\left(3\right)\)ta có: \(\left(\dfrac{3b}{4}\right)^2+b^2+\left(\dfrac{4b}{3}\right)^2\)\(=481\)
\(\Rightarrow b=12\)
\(\Rightarrow a=\dfrac{3b}{4}=\dfrac{3.12}{4}=\dfrac{36}{4}=9\)
\(\Rightarrow c=\dfrac{4b}{3}=\dfrac{4.12}{3}=\dfrac{48}{3}=16\)
Tiên T.I.C.K Hiền nhoa!!^_^

1 tháng 12 2017

Gọi 3 số dương lần lượt là a,b,c

ta có:a2+b2+c2=181

và b=\(\dfrac{3}{4}\).a=\(\dfrac{2}{3}\).c

=>\(\dfrac{b}{6}=\dfrac{3a}{4.6}=\dfrac{2c}{3.6}=\dfrac{b}{6}=\dfrac{a}{8}=\dfrac{c}{9}\)

=>\(\dfrac{b^2}{36}=\dfrac{a^2}{64}=\dfrac{c^2}{81}=\dfrac{a^2+b^2+c^2}{64+36+81}=\dfrac{181}{181}=1\)=>\(\left\{{}\begin{matrix}a^2=64\\b^2=36\\c^2=81\end{matrix}\right.=>\left\{{}\begin{matrix}a=\pm8\\b=\pm6\\c=\pm9\end{matrix}\right.\)

Vì a,b,c>0=>(a,b,c)=(8,6,9)

2 tháng 11 2017

\(\frac{2a}{3}=\frac{3b}{4}=\frac{c}{3}\Rightarrow\frac{a}{18}=\frac{b}{16}=\frac{c}{36}\)

Còn lại tự làm

Gọi ba số cần tìm lần lượt là a,b,c(a,b,c>0)

Theo đề, ta có: \(a=\dfrac{4}{3}b=\dfrac{3}{4}c\)

=>12b=16c=9c

=>a/12=b/9=c/16

Đặt a/12=b/9=c/16=k

=>a=12k; b=9k; c=16k

=>k>0(Vì a>0; b>0;c>0)

a^2+b^2+c^2=481

=>144k^2+81k^2+256k^2=481

=>k^2=1

=>k=1

=>a=12; b=9; c=16

Câu 1: 

c: 2x=3y

nên x/3=y/2

=>x/9=y/6

5y=3z

nên y/3=z/5

=>y/6=z/10

=>x/9=y/6=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)

Do đó: x=-63/5; y=-42/5; z=-14

Bài 2:

Gọi ba số lần lượt là a,b,c

Theo đề, ta có: 4/3a=b=3/4c

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)

\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)

Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)

=>a=9k; b=12k; c=16k

Theo đề, ta có: \(a^2+b^2+c^2=481\)

\(\Leftrightarrow81k^2+144k^2+256k^2=481\)

=>k2=1

Trường hợp 1: k=1

=>a=9; b=12; c=16

Trường hợp 2: k=-1

=>a=-9; b=-12; c=-16

 

18 tháng 4 2017


Gọi chiều dài mỗi tấm vải lần lượt là x (m); y (m); z (m) Theo đề, ta có: x/2 = y/3 = z/4 và x + y + z = 108 Theo tính chất của dãy tỉ số bằng nhau, ta có: Vậy Tấm vải 1 dài 24 mét; Tấm vải 2 dài 36 mét; Tấm vải 3 dài 48 mét.

13 tháng 8 2018

Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)

Vì 3 tấm vải dài tổng cộng là 108 (m)

⇒ x+y+z=108 (1)

Sau khi bán đi tấm vải thú 1 được :

1-1/2=1/2

Sau khi bán tấm vải thứ 2 được :

1-2/3=1/3

Sau khi bán tấm vải thứ 3 được :

1-3/4=1/4 (2)

Từ (1) và (2), ta có:

x/2=y/3=z/4=x+y+z/2+3+4=108/9=12

Ta có :

x/2=12⇒x=24

y/3=12⇒y=36

z/4=12⇒z=48

Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m

5 tháng 8 2018

gọi \(x_1\) là số đo góc số 1 ; \(x_2\) là số đo góc số 2 ; \(x_3\) là số đo góc số 3

điều kiện : \(x_1;x_2;x_3>0\)\(x_1+x_2+x_3=180\) ............(1)

ta có : số đo góc thứ nhất bằng \(\dfrac{2}{3}\) số đo góc thứ 2

\(\Rightarrow x_1=\dfrac{2}{3}x_2\) .....................................(2)

ta có : số đo góc thứ hai bằng \(\dfrac{1}{2}\) số đo góc thứ 3

\(\Rightarrow x_2=\dfrac{1}{2}x_3\)................................ (3)

từ (1) ; (2) (3) ta có hệ : \(\left\{{}\begin{matrix}x_1+x_2+x_3=180\\x_1=\dfrac{2}{3}x_2\\x_2=\dfrac{1}{2}x_3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{360}{11}\\x_2=\dfrac{540}{11}\\x_3=\dfrac{1080}{11}\end{matrix}\right.\) vậy .........................................................................................

5 tháng 8 2018

Gọi ba góc của tam giác lần lượt là: a,b,c (a,b,c ϵ N*)

Theo bài ra ta có:

\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)\(\dfrac{b}{1}=\dfrac{c}{2}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{6}\)

mặt khác: a+b+c=180 (tổng ba góc trong một tam giác)

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{6}=\dfrac{a+b+c}{2+3+6}=\dfrac{180}{11}\)

=> a =\(\dfrac{180}{11}\cdot2\)=360/11

=>b=180 / 11 * 3 =540/11

=> c= 180/11 * 6=1080/11

14 tháng 8 2017

Gọi 3 tấm vải lần lượt là \(a;b;c\left(a;b;c>0\right)\)

Khi bán đi mỗi tấm vải ta dc dãy tỉ số bằng nhau :

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{126}{9}=14\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=14\Leftrightarrow a=28\\\dfrac{b}{3}=14\Leftrightarrow b=42\\\dfrac{c}{4}=14\Leftrightarrow c=56\end{matrix}\right.\)

Vậy ....

gọi 3 số cần tìm là x,y,z ; ta có:

\(\hept{\begin{cases}x^2+y^2+z^2=481\\y=\frac{4}{3}x\\y=\frac{3}{4}z\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=481\left(1\right)\\x=\frac{3}{4}y\left(2\right)\\z=\frac{4}{3}y\left(3\right)\end{cases}}\)

Thay (2),(3) vào (1) ta được: \(\left(\frac{3}{4}y\right)^2+y^2+\left(\frac{4}{3}y\right)^2=481\)

\(\Rightarrow\frac{9}{16}y^2+y^2+\frac{16}{9}y^2=481\)

\(\Rightarrow\frac{481}{144}y^2=481\Rightarrow y^2=144\Rightarrow y=12\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{4}y=\frac{3}{4}.12=9\\z=\frac{4}{3}y=\frac{4}{3}.12=16\end{cases}}\)

Vậy 3 số đó là 9,12,16

17 tháng 8 2020

Gọi số thứ nhất là a; số thứ hai là ; số thứ 3 là c

Ta có a2 + b2 + c2 = 481

Lại có \(b=\frac{4}{3}a=\frac{3}{4}c\)

=> \(b.\frac{1}{12}=\frac{4}{3}a.\frac{1}{12}=\frac{3}{4}c.\frac{1}{12}\)

=> \(\frac{b}{12}=\frac{a}{9}=\frac{c}{16}\)

Đặt \(\frac{b}{12}=\frac{a}{9}=\frac{c}{16}=k\Rightarrow\hept{\begin{cases}b=12k\\a=9k\\c=16k\end{cases}}\)

Khi đó (1) <=> (12k)2 + (9k)2 + (16k2) = 481

=> 144k2 + 81k2 + 256k2 = 481

=> 481k2 = 481

=> k2 = 1

=> k = \(\pm1\)

Nếu k = 1 => c = 16 ; b = 9 ; a = 12

Nếu k = 2 => a = -12 ; b = -9 ; c = -16

Vậy các cặp số (a;b;c) thỏa mãn là (12;9;16) ; (-12 ; -9 ; - 16)