K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

đặt x/2=y/5=k

=>x=2k

=>y=5k

  xy=10

=>2k*5k=10

=>10k2=10

=>k2=1=>k=1 hoặc -1

th1 k=-1

=>x=-2

=>y=-5

th2k=1

=>x=2

y=5

   Vậy ..........................

 study well

 k nha

 ủng hộ mk nhé

\(a;\frac{16}{2^n}=2\Leftrightarrow\frac{16}{2^n}=\frac{16}{2^3}\Rightarrow n=3\)

\(b;\frac{\left(-3\right)^n}{81}=-27\Leftrightarrow\frac{\left(-3\right)^n}{81}=\frac{\left(-3\right)^7}{81}\Rightarrow n=7\)

\(c;8^n:2^n=4\Leftrightarrow2^{3n}:2^n=2^2\Leftrightarrow2^{2n}=2^2\Rightarrow2n=2\Leftrightarrow n=1\)

24 tháng 7 2019

a) \(\frac{16}{2^n}\)\(2\)=> \(\frac{16}{2^n}\)\(\frac{16}{8}\)=> 2n = 8 => 2n = 23 => n = 3.

b) Ta có : (-3)n = - 27 . 81

              => (-3)= - 2187

              => (-3)n =  (-3)7

              => n = 7

c) 8n : 2n = 4

   => 4n    = 4

   => n = 1.

Bạn tk cho mik nha

25 tháng 7 2019

a)Ta có (2.5)2 = 102 =100

             22.52= 4. 25=100

              vì 100=100 nên (2.5)2 = 22.52

               Vậy:........

                Mk chỉ giúp được thế thui nha sr

25 tháng 7 2019

a) Ta có: (2.5)= 6,25

                22.52 = 4. 25 = 100

=> Vì 6,25 < 100 nên (2,5)2 < 22.52

23 tháng 7 2019

a) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

\(\Leftrightarrow m=5\)

23 tháng 7 2019

b) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Leftrightarrow\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

\(\Leftrightarrow n=3\)

                                      Đề luyện thi HSG số 5Bài 1 (3 điểm) Thực hiện phép tính:a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3}...
Đọc tiếp

                                      Đề luyện thi HSG số 5

Bài 1 (3 điểm) Thực hiện phép tính:

a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)

b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)

c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)

Bài 2 (10 điểm) Tìm x, y, z biết:

a) \((1 - x) . (2x + 3) < 0\)

b) \((2x - 1)^4 = 16\)

c) \((2x + 1)^4 = (2x + 1)^6\)

d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)

e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)

f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)

g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)

h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)

Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.

Bài 4 (1,5 điểm)

a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)

b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)

Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)

Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:

a) Ba điểm E, A, D thẳng hàng

b) A là trung điểm của ED

 

4
29 tháng 12 2018

Bài easy quá mà!

4. a) Áp dụng tỉ dãy số bằng nhau:

\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)

\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)

Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)

\(a_2-2=99\Leftrightarrow a_2=101\)

.......v.v...

\(a_{100}-100=1\Leftrightarrow a_{100}=101\)

Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)

29 tháng 12 2018

Bài 5/

Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)

Suy ra:

 \(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")

Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)

20 tháng 9 2019

phần 1 ghi ko rõ

20 tháng 9 2019

2) Vì \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{7}{-2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-7}{2}.5=\frac{-35}{2}\\y=\frac{-7}{2}.7=\frac{-1}{2}\end{cases}}\)

Vậy ..