
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt : a = 16x và b = 18y
Ta có : 16 ( x + y ) = 128
=> x + y = 8
=> x = 7 và y = 1
Vì a > b nên ta có a = 16x = 16.7 = 112
b = 128 - 112 = 16
Vậy ...
Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.
16n + 16m = 128
=> 16(m + n) = 128
=> n + m = 128 : 16 = 8
8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Vì a > b => n > m => n có thể bằng 8; 7; 6; 5
m có thể bằng 0; 1; 2; 3
Vì a > b => loại bỏ trường hợp 4 + 4
=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)

Bài 1:
Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$
Ta có:
$346-r\vdots a$
$414-r\vdots a$
$539-r\vdots a$
Suy ra:
$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$
$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$
$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$
$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$
$\Rightarrow 1\vdots a\Rightarrow a=1$
Bài 2:
Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=16x+16y=128$
$\Rightarrow x+y=8$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$
$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$

sorry chua doc kỹ
(2n+1) và (2n+3)
giả sử chúng ko nguyên tố cùng nhau nghĩa là tồn tại m là ước chung khác 1
ta có (2n+1 chia hết m
(2n+3) chia hết cho m
theo tính chất (tổng hiệu có)
[(2n+3)-(2n+1)] chia hết cho m
4 chia hết cho m
m thuộc (1,2,4)
(2n+1 ) không thể chia hết cho 2, 4
=> m=1 vậy (2n+1) và (2n+3) có ươcs chung lớn nhất =1
=> dpcm

ƯCLN(a,b) = 16 \(\Rightarrow\) a = 16p ; b = 16q, với (p,q) = 1
Từ gt a + b = 128 \(\Rightarrow\) 16p + 16q = 128 hay p + q = 8 = 1 + 7 = 3 + 5
Từ đó suy ra a, b nhé bạn.
Vì ƯCLN (a,b) = 16 nên a= 16a1
b= 16b1
(a1, b1) = 1; a1, b1 \(\in\)N*
Mà a+b = 128 nên thay a= 16a1; b= 16b1 ta có:
16a1 + 16b1 = 128
16 (a1 + b1) = 128
a1 + b1 = 128 : 16
a1 + b1 = 8
Sau đó vẽ bảng thử chọn ra a, b <cái này tự làm nhé>, nhớ căn cứ vào (a1, b1) = 1 để thử chọn.

Muốn chia hết cho 12 thì cũng phải chia hết cho 3 và 4
Muốn chia hết cho thì 2 chữ số tận cùng phải chia hết cho 4
Muốn chia hết cho 3 thì tổng các chữ số chia hết cho 3
Ta có các trường hợp số b là : 2 ; 6
Nếu b = 2 => 4a12 chia hết cho 3 = ( 4 + a + 1 + 2 ) : 3 => a = 2 hoặc 5 ; 8
Nếu b = 6 => 4a16 Chia hết cho 3 = ( 4 + a + 1 + 6 ) : 3 => a = 1 hoặc 4 ; 7
Vậy các số đó là : 4212; 4512 ; 4812 ; 4116 ; 4416 ; 4716
Chia hết cho 12 là chia hết cho 3 và 4
Để 4a1b chia hết cho 4 thì b = 2 ; 6
Nếu b = 2 thì 4a12 phải chia hết cho 3 => a = 2 ; 5 ; 8
Nếu b = 6 thì 4a16 phải chia hết cho 3 => a = 1 ; 4 ; 7

Vì ƯCLN(a;b)=1 \(\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases}\left(m;n\in N\right);\left(m;n\right)=1}\)
Ta có: a + b = 128
=> 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà (m;n)=1 \(\Rightarrow\hept{\begin{cases}m=1\\n=7\end{cases}}\)hoặc \(\hept{\begin{cases}m=3\\n=5\end{cases}}\) hoặc \(\hept{\begin{cases}m=7\\n=1\end{cases}}\) hoặc \(\hept{\begin{cases}m=5\\n=3\end{cases}}\)
Các cặp giá trị (a;b) tương ứng là: (16;112) ; (48;80) ; (112;16) ; (80;48)
vì ƯCLN(a,b) = 16 suy ra a = 16.m, b = 16.n (m,n) = 1
ta có a+b = 128
suy ra 16m+16n = 128
suy ra 16.(m+n) = 128
suy ra m+n = 128/16=8
m , n
1 7
3 5
7 1
5 3
m | |||||||
|

Vì ƯCLN ( a;b )=1\(\left\{{}\begin{matrix}a=16.m\\b=16.n\end{matrix}\right.\) ( m;n ∈ \(N\));(m;n)=1
Ta có : a+b=128
⇔ 16.m + 16.n = 128
⇔ 16.(m+n) = 128
⇔ m + n =128 : 16 = 8
Mà (m+n)=1⇔\(\left\{{}\begin{matrix}m=3\\n=5\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=7\\n=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}m=5\\n=3\end{matrix}\right.\)
Các cặp giá trị (a;b)tương ứng là ( 16;11;12 ) ; (48;80 ) ; ( 112;16 ) ;(80;48 )
Gọi 2 số cần tìm là a và b ta có:
Đặt a:16 = n ; b:16 = m ta có:
m + n = 128 : 16 = 8 và m;n là 2 số nguyên tố cùng nhau
=> Nếu m = 1 ; n = 7 (lấy)
Nếu m = 2 ; n = 6 (bỏ)
Nếu m = 3 n = 5 (chọn)
Nếu m = 4 ; n = 4 (bỏ)
Và các trường hợp ngược lại
=> Các cặp (m;n) là: (1;7) ; (7;1) ; (3;5) ; (5;3)
=> Các cặp (a;b) là: (16;112) ; (112;16) ; (48;80) ; (80;48)