K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2015

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

25 tháng 4 2020

hay đó

18 tháng 12 2015

dễ mà hoàng

trong sách có đó

13 tháng 10 2015

2 và 5

 vì 5-2=3(số nguyên tố)

   5+2=7(số nguyên tố)

     Tick đúng cho mình nha

15 tháng 11 2017

câu 1:

+nếu \(p=2\Rightarrow p+10=12;p+14=16\)không phải số NT => loại

+nếu \(p=3\Rightarrow p+10=13;p+14=17\)là số NT => thỏa mãn

+ nếu \(p>3\), vì p là số NT nên p có dạng \(3k+1;3k+2\)

- với \(p=3k+1\Rightarrow p+14=3k+15⋮3\Rightarrow\)không phải số NT => loại

- với \(p=3k+2\Rightarrow p+10=3k+12⋮3\Rightarrow\)không phải số NT => loại

vậy p=3

15 tháng 11 2017

ughadu au ha ghadufy hauydfj yh

14 tháng 10 2018

Chỉ ra 2 số nguyên tố mà tổng của. Chúng cũng là 1 số nguyên tố và hiệu củ chúng cũng là 1 số nguyên tố.

     -2 số đó là 35 và 6.

 Học tốt

Tk me