Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
b ) Vì A là tổng các số nguyên âm lẻ có hai chữ số .
\(\Rightarrow\)A = - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 )
Vì b tổng các số nguyên dương chẵn có hai chữ số .
\(\Rightarrow\) B = 10 + 12 + 14 + ... + 98
Vậy tổng A + b là :
\(\Rightarrow\) A + b = [ - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 ) ] + ( 10 + 12 + 14 + ... + 98 )
\(\Rightarrow\) A + b = ( 10 - 11 ) + ( 12 − 13 ) + ( 14 - 15 ) + ... + ( 98 - 99 )
\(\Rightarrow\) A + b = - 1 + ( - 1 ) + ( - 1 ) + . . + ( - 1 ) ( 50 số hạng )
\(\Rightarrow\) A + b = ( - 1 ) × 50
\(\Rightarrow\)A + b = - 50
B1 : BCNN(52,60)=780 BCNN(42,35,72) =2520
B2 : BC(48,72) = B144
BC(42,45,72) = B2520
B3 : cặp 2 số nguyên tố cùng nhau : 14 và 5 ; 5 và 22
B4 : ƯC(90,150) = 1;2;3;6;10;15;30 -> x thuộc (6;10;15)
1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại
=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a
+) Nếu a = 3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại
+) Nếu > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)
Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại
Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại
Vậy a = 3. 1+ 2 = 5
Vậy chỉ có 2 số 2;5 thỏa mãn
a) Vì số nhà của bạn An và bạn Bình đều chia hết cho 5.
⇒ b tận cùng bằng 0 hoặc 5.
*Th1: b=0
⇒ a+5+3+0 chia hết cho 9⇒a=1⇒a53b=1530
*Th2: b=5
⇒ a+5+3+5 chia hết cho 9⇒a=5⇒a53b=5535
mà số nhà của An>Bình
⇒ Số nhà An:5535
⇒ Số nhà Bình: 1530
1, Số tận cùng là 4 thì chia hết cho 2 Đ
2, Số chia hết cho 2 thì có chữ số tận cùng là 4 Đ
3, Số chia hết cho 5 thì có chữ số tận cùng là 5 Đ
4, Nếu một số hạng của tổng không chia hết cho 7 thì tổng không chia hết cho 7 S
5, Số chia hết cho 9 có thể chia hết cho 3 Đ
6, Số chia hết cho 3 có thể chia hết cho 9 S
7, Nếu một số không chia hết cho 9 thì tổng các chữ số của nó không chia hết cho 9 S
8, Nếu tổng các chữ số của số a chia hết cho 9 dư r thì số a chia hết cho 9 sư r Đ
9, Số nguyên là số tự nhiên chỉ chia hể cho 1 và chính nó S
10, Hợp số là số tự nhiên nhiều hơn 2 ước Đ
11, Một số nguyên tố đều là số lẻ S
12, không có số nguyên tố nào có chữ số hàng đơn vị là 5 S
13, Không có số nguyên tố lớn hơn 5 có chữ số tạn cùng là 0; 2; 4; 5; 6; 8 Đ
14, Nếu số tự nhiên a lớn hơn 7 và chia hết cho 7 thì a là hợp số Đ
15, Hai số nguyên tố cùng nhau là hai số cùng nhau là số nguyên tố Đ
16, Hai số nguyên tố là hai số nguyên tố cùng nhau S
17, Hai số 8 và 25 là hai số nguyên tố cùng nhau S
ht
mình ko bit giai
...................