K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2a+2b+2=ab\)

\(\Leftrightarrow2a+2b+2-ab=0\Leftrightarrow\left(2a-ab\right)-\left(4-2b\right)+6=0\)

\(\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)

rồi bạn kẻ bảng ra xét x;y là xong

30 tháng 3 2017

À nhầm xét a;b chứ không phải x;y :D

Câu 1(4,5 điểm) 1. Thực hiện phép tính:A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)Câu 2 (4,0 điểm)1. Cho phân...
Đọc tiếp

Câu 1(4,5 điểm) 

1. Thực hiện phép tính:

A=\(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)

B=\(\frac{2^{30}\cdot5^7+2^{13}\cdot5^{27}}{2^{27}\cdot5^7+2^{10}\cdot5^{27}}\)

C=\(\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)

2. Tìm x biết: \(\left(4+2^2+2^3+2^4+...+2^{20}\right)\cdot x=2^{22}-2^{21}\)

Câu 2 (4,0 điểm)

1. Cho phân số: \(\frac{1+2+3+...+9}{11+12+13+...+19}\)

(tử số là tổng các số tự nhiên từ 1 đến 9; mẫu số là tổng các số tự nhiên từ 11 đến 19)

a) Rút gọn phân số trên

b) Hãy xoá một số hạng ở tử số và một số hạng ở mẫu số để được một phân số mới có giá trị bằng phân số ban đầu.

2. So sánh: D=\(\frac{8^{10}+1}{8^{10}-1}\)và E= \(\frac{8^{10}-1}{8^{10}-3}\)

Câu 3 (4,5 điểm)

1. Cho F=\(\frac{n^2+1}{n^2-3}\).Tìm số nguyên n để F có giá trị là số nguyên.

2. Cho G=\(\frac{1}{100^2}+\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{198^2}+\frac{1}{199^2}\). Chứng minh rằng: \(\frac{1}{200}< G< \frac{1}{99}\)

3. Tìm hai số biết tổng của chúng bằng 162 và ƯCLN của chúng là 18

Câu 4: (5,5 điểm) Cho hai góc AOx và góc BOx có chung cạnh Ox và hai góc này không kề nhau

1. Cho \(\widehat{AOx}=38^o\)và \(\widehat{BOx}=112^o\).

a) Trong ba tia OA,OB,Ox tia nào nằm giữa hai tia còn lại? Vì sao?

b) Tính \(\widehat{AOB}\).

c) Vẽ tia phân giác OM của \(\widehat{AOB}\). Tính \(\widehat{MOx}\)

2. Cho \(\widehat{AOx}=m\)và \(\widehat{BOx}=n\), trong đó \(0^o< m+n< 180^o\). Tìm điều kiện giữa \(m\)và \(n\)để tia OA nằm giữa hai tia OM và Ox. Khi đó hãy tính \(\widehat{MOx}\)theo \(m\)và \(n\).

Câu 5: (1,5 điểm) Cho bốn số nguyên dương \(a,b,c,d\)thoả mãn đẳng thức \(a^2+b^2=c^2+d^2\). Chứng minh rằng tổng \(a+b+c+d\)là một hợp số

 

 

 

0
3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

Bài 1 :

Theo bài ra ta có : \(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)

Áp dụng t/c dãy tỉ số ''='' nhau ta có 

\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{10}{5}=2\)

\(\Leftrightarrow\frac{a}{2}=2\Leftrightarrow a=4\)

\(\Leftrightarrow\frac{b}{3}=2\Leftrightarrow b=6\)

Bài 2 : 

Tìm khó quá cj thử x2;x3 ko ra rồi )): 

5 tháng 4 2018

a, \(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{999^2}{998.1000}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{999.999}{998.1000}\)

\(=\frac{2.3.4...999}{1.2.3...998}.\frac{2.3.4...999}{3.4.5...1000}\)

\(=\frac{999}{1}.\frac{2}{1000}\)

\(=\frac{999.2}{1000.1}=\frac{999.2}{500.2.1}\)

\(=\frac{999}{500}\)

Vậy \(A=\frac{999}{500}\)

chúc bạn học giỏi

5 tháng 4 2018

cảm ơn bạn nhiều nha