Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương trình hoành độ giao điểm của đồ thị hàm số y = x 2 − 6 x + 9 và trục hoành là:
x 2 − 6 x + 9 = 0 ⇔ x = 0 .
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = x 2 − 6 x + 9 và 2 đường thẳng x= 0; y = 0 là:
Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4
Gọi B là giao điểm của (d) và trục hoành ⇒ B − 4 k ; 0 .
Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:
.
Đáp án A
Phương trình hoành độ giao điểm của đồ thị hàm số y = x 2 − 6 x + 9 và trục hoành là:
x 2 − 6 x + 9 = 0 ⇔ x = 0 .
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = x 2 − 6 x + 9 và 2 đường thẳng x= 0; y = 0 là:
Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4
Gọi B là giao điểm của (d) và trục hoành ⇒ B − 4 k ; 0 .
Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:
Đáp án A
Phương trình hoành độ giao điểm của đồ thị hàm số y = x 2 − 6 x + 9 và trục hoành là:
x 2 − 6 x + 9 = 0 ⇔ x = 0 .
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số y = x 2 − 6 x + 9 và 2 đường thẳng x= 0; y = 0 là:
Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4
Gọi B là giao điểm của (d) và trục hoành ⇒ B − 4 k ; 0 .
Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:
Chọn C.
Dựa vào đồ thị hàm số f ' ( x ) suy ra BBT của hàm số y = f(x)
Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.
Xét khẳng định 3: Ta có:
f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0
Do đó f ( 3 ) > f ( 0 ) ⇒ Vậy khẳng định 3 đúng.
Đáp án C
Để (C) cắt d tại 2 điểm phân biệt có hoành độ dương thì PT f(x) = 0 có 2 nghiệm dương phân biệt khác 3
Đáp án D
Ta có y = a x 4 + b x 2 + 2 → y ' = 4 a x 3 + 2 b x ⇒ y ' 1 = − 4 a − 2 b .
Theo bài ra, ta có y ' − 1 = − 2 y − 1 = 1 ⇔ − 4 a − 2 b = − 2 a + b + 2 = 1 ⇔ a = 2 b = − 3 ⇒ a 2 − b 2 = − 5.
Đáp án D.
Do A − 1 ; 1 thuộc đồ thị hàm số nên: 1 = a + b + 2 ⇔ a + b = − 1 (1).
Tiếp tuyến tại điểm A − 1 ; 1 vuông góc với đường thẳng d : x − 2 y + 3 = 0 ⇒ y ' − 1 . k d = − 1.
Trong đó:
k d = 1 2 ; y ' = 4 a x 3 + 2 b x ⇒ y ' − 1 = − 4 a − 2 b
Suy ra :
− 4 a − 2 b . 1 2 = − 1 ⇔ 2 a + b = 1 2
Từ (1) và (2) suy ra a = 2 b ; b = − 3 ⇒ a 2 − b 2 = − 5.
Đáp án A.
Ta có y ' = 3 x 2 − 6 x nên hệ số góc tiếp tuyến của đồ thị hàm số tại điểm M x 0 ; y 0 là k = y ' x 0 = 3 x 0 2 − 6 x 0 .