Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{7}\)A = \(\frac{3}{10}\)B x \(\frac{4}{9}\)= \(\frac{2}{15}\)B => \(\frac{A}{B}\)= \(\frac{2}{15}\)\(=\frac{7}{15}\)
\(\frac{2}{7}\)
Số thập phân hữu hạn là mấy số thập phân không có dấu .... ở đuôi ý bạn ạ.
Còn bài này mình không hiểu rõ đề bài mấy bạn ạ
a)\(1,5:2,16=15:216=5:72\)
b)\(4\dfrac{2}{7}:\dfrac{3}{5}=\dfrac{30}{7}:\dfrac{3}{5}=\dfrac{30}{7}.\dfrac{5}{3}=\dfrac{50}{7}=50:7\)
c)\(\dfrac{\dfrac{2}{9}}{0,31}=\dfrac{2}{9}:\dfrac{31}{100}=\dfrac{2}{9}.\dfrac{100}{31}=\dfrac{31}{450}=31:450\)
a) \(\dfrac{1}{3};\) \(\dfrac{2,5}{5,5}=\dfrac{25}{55}=\dfrac{5}{11}\);
\(4:12=\dfrac{4}{12}=\dfrac{1}{3}\) ; \(\dfrac{7}{4}\)
Ta có :\(\dfrac{1}{3}=\dfrac{1}{3}\)\(\Rightarrow\)\(\dfrac{1}{3}=4:12\) nên 2 tỉ số này lập thành 1 tỉ lệ thức.
b) \(\dfrac{4}{9}\); \(\dfrac{18}{42}=\dfrac{3}{7}\); \(\dfrac{-2}{-4,5}=\dfrac{2}{4,5}=\dfrac{20}{45}=\dfrac{4}{9}\);
\(21:49=\dfrac{21}{49}=\dfrac{3}{7}\); \(\dfrac{5}{9}\).
Ta có : - \(\dfrac{4}{9}=\dfrac{4}{9}\Rightarrow\dfrac{4}{9}=\dfrac{-2}{-4,5}\) nên 2 tỉ số này lập thành 1 tỉ lệ thức.
- \(\dfrac{3}{7}=\dfrac{3}{7}\Rightarrow\dfrac{18}{42}=21:49\) nên 2 tỉ số này lập thành 1 tỉ lệ thức.
Chúc bạn hok giỏi nha!
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)
Bài 2:
a, Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{-5}=\dfrac{a+b}{2+\left(-5\right)}=\dfrac{21}{-3}=-7\)
(do \(a+b=21\))
\(\Rightarrow\left\{{}\begin{matrix}a=-7.2=-14\\b=-7.\left(-5\right)=35\end{matrix}\right.\)
Vậy \(a=-14;b=35\)
b, Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\dfrac{-10}{a}=\dfrac{-15}{b}=\dfrac{-10-\left(-15\right)}{a-b}=\dfrac{5}{-5}=-1\)
(do \(a-b=-5\))
\(\Rightarrow\left\{{}\begin{matrix}a=-10:\left(-1\right)=10\\b=-15:\left(-1\right)=15\end{matrix}\right.\)
Vậy \(a=10;b=15\)
Chúc bạn học tốt!!!
c, Ta có:
\(3x=2y\Rightarrow21x=14y\)
\(7y=5z\Rightarrow14y=10z\)
\(\Rightarrow21x=14y=10z\Rightarrow\dfrac{21x}{210}=\dfrac{14y}{210}=\dfrac{10z}{210}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
(do \(x-y+z=32\))
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy \(x=20;y=30;z=42\)
Chúc bạn học tốt!!!
Theo bài ra ta có:
\(\dfrac{2}{7}A=\dfrac{9}{4}.\dfrac{3}{10}B\\ \Rightarrow\dfrac{2}{7}A=\dfrac{27}{40}B\\ \Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{27}{40}}{\dfrac{2}{7}}=\dfrac{189}{80}\)
\(\dfrac{2}{7}\)A=\(\dfrac{3}{10}\).\(\dfrac{4}{9}\)
⇒\(\dfrac{2}{7}\)A=\(\dfrac{2}{15}\)B
⇒\(\dfrac{A}{\dfrac{2}{15}}=\dfrac{B}{\dfrac{2}{7}}\)
\(\dfrac{A}{B}=\dfrac{2}{\dfrac{15}{\dfrac{2}{7}}}\)
⇒\(\dfrac{A}{B}=\dfrac{7}{15}\)