Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)\(+\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}\)
\(F=\sqrt[3]{\left(3-\sqrt{2}\right)^3}+\sqrt[3]{\left(3+\sqrt{2}\right)^3}\)
\(F=3+\sqrt{2}+3-\sqrt{2}=6\)
\(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\dfrac{5}{\sqrt{5}}+\dfrac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)
\(=3\sqrt{5}-2\)
C= 3√45+29√2+3√45−29√2
⇔\(C^3=45+29\sqrt{2}+45-29\sqrt{2}+3\sqrt[3]{45+29\sqrt{2}}.\sqrt[3]{45-29\sqrt{2}}\left(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\right)\\ C^3=90+3\sqrt[3]{343}.C\\ C^3=90+21C\\ C^3-21C-90=0\\ C^3-36C+15C-90\\ C\left(C-6\right)\left(C+6\right)+15\left(C-6\right)=0\\ \left(C-6\right)\left[C\left(C+6\right)+15\right]=0\\ \left(C-6\right)\left(C^2+6C+15\right)=0\\ \)
Mà C2+6C+15=(C+3)2+6 > 0
Nên C-6=0
⇒C=6
\(=5\sqrt{2}-9\sqrt{5}-6\sqrt{2}+10\sqrt{5}=\sqrt{5}-\sqrt{2}\)
Lời giải:
a.
$=2\sqrt{5}-9\sqrt{5}-2\sqrt{5}=(2-9-2)\sqrt{5}=-9\sqrt{5}$
b.
$=36\sqrt{6}-2\sqrt{6}+6\sqrt{6}=(36-2+6)\sqrt{6}=40\sqrt{6}$
A = \(\sqrt[3]{10+6\sqrt{3}}+\sqrt[3]{10-6\sqrt{3}}\)
<=> A3 = 20 - 3×2A
<=> A3 + 6A - 20 = 0
<=> A = 2
\(\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}\)
\(=\sqrt[3]{27+27\sqrt{2}+18+2\sqrt{2}}+\sqrt[3]{27-27\sqrt{2}+18-2\sqrt{2}}\)
\(=\sqrt[3]{\left(3+\sqrt{2}\right)^3}+\sqrt[3]{\left(3-\sqrt{2}\right)^3}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)