Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1\cdot2\cdot3-2\cdot3\cdot4+3\cdot4\cdot5+...+98\cdot99\cdot100\)
\(\Rightarrow4A=4\cdot\left(1\cdot2\cdot3+2\cdot3\cdot4+...+98\cdot99\cdot100\right)\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+98\cdot99\cdot100\cdot4\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+....+98\cdot99\cdot100\cdot\left(101-97\right)\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+3\cdot4\cdot5\cdot6-....-97\cdot98\cdot99\cdot100\)
\(\Rightarrow4A=\left(1\cdot2\cdot3\cdot4-1\cdot2\cdot3\cdot4\right)+\left(2\cdot3\cdot4\cdot5-2\cdot3\cdot4\cdot5\right)+...+98\cdot99\cdot100\cdot101\)
\(\Rightarrow4A=0+0+0+...+98\cdot99\cdot100\cdot101\)
\(\Rightarrow4A=98\cdot99\cdot100\cdot101\)
\(\Rightarrow A=\dfrac{98\cdot99\cdot100\cdot101}{4}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{37.38.39}\right).1428+185.8\)
\(=\frac{2}{2}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185.8\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{37.38.39}\right).1428+1480\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right).1428+1480\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right).1428+1480\)
\(\frac{1}{2}.\frac{370}{741}.1428+1480\)
\(=\frac{185}{741}.1428+1480\)
\(=356,52+1480=1836,52\)
chỗ\(\frac{185}{741}.1428\)mk làm tròn số lun á nha
mk ko chắc tính đúng hay sai nha nhưng cách làm thì kiểu vậy
Ta có: \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Đặt A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
2A=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\)
2A=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}\) \(+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
2A=\(\frac{1}{1.2}-\frac{1}{9.10}\)
2A=\(\frac{22}{45}\)
A=\(\frac{22}{45}\div2\)
A=\(\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)
Vậy x=\(\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\right].x=\frac{23}{45}\)
\(\Leftrightarrow\left(\frac{1}{2}.\frac{44}{90}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}.x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
nhung sao banj khong phan h ra ro rang,chang nhe den do khong phan h duoc sao
= 1/2*(1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + ... + 1/8*9 - 1/9*10) = 1/2*(1/1*2 - 1/9*10)=1/2 * 22/45 = 11/45
2A = \(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)
2A = \(\frac{1}{2}-\frac{1}{90}\)
2A = \(\frac{44}{90}\)
A = \(\frac{22}{90}\)
https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-1-1-2-3-1-2-3-4-1-n-n-1-n-2--faq240420.html
`->` Mình tham khảo ở đây để làm nếu sai thì cho mik xl ạ.
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)
\(2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\\ 2A=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)}-\dfrac{1}{\left(n-1\right)\cdot n}\)
\(2A=\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)}\)
\(A=\dfrac{1}{4}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)\cdot2}\)
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\right)\)
\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right]\)
\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)n}\right]\)
\(=\dfrac{1}{2}\cdot\left[\dfrac{n\left(n-1\right)}{2n\left(n-1\right)}-\dfrac{2}{2n\left(n-1\right)}\right]\)
\(=\dfrac{1}{2}\cdot\dfrac{n\left(n-1\right)-2}{2n\left(n-1\right)}\)
\(=\dfrac{n^2-n-2}{4n\left(n-1\right)}\)
#\(Toru\)
Bài làm
1.2.3...9 - 1.2.3...8 - 1.2.3...7.82
= 1.2.3...8.( 9 - 1 - 8 )
= 1.2.3...8 .0
= 0
_Chúc_Bạn_Hok_Tốt_^^
\(1.2.3....9-1.2.3...8-1.2.3...7.8^2=1.2.3....8\left(9-1-8\right)=1.2.3....8.0=0\)
s= (2/1.2.3 +2/2.3.4+...+2/98.99.100):2= (1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100):2=(1/1.2-1/99.100):2=4949/19800=>S=4949/19800
bài này cô dạy mk rùi, nhưng ko mún viết, mỏi tay