Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)
\(=>A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=>A=\frac{3.4.5.....100}{2.3.4.....99}=\frac{100}{2}=50\)
Chúc bạn học tốt!
Không chép lại đề nhé
Ta có:
P=\(\frac{50-49}{49}+\frac{50-48}{48}+...+\frac{50-2}{2}+\frac{50-1}{1}\)
P=\(\frac{50}{49}-\frac{49}{49}+\frac{50}{48}-\frac{48}{48}+...+\frac{50}{2}-\frac{2}{2}+\frac{50}{1}-\frac{1}{1}\)
P=\(\left(\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\right)+\frac{50}{1}-\left(\frac{49}{49}+\frac{48}{48}+...+\frac{2}{2}+\frac{1}{1}\right)\)
P=\(50\cdot\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)+50-49\) (chỗ này gộp nha)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)+1\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)+\frac{50}{50}\)
P=\(50\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)
=>P=50S
=>\(\frac{S}{P}=\frac{S}{50S}=\frac{1}{50}\)
Vừa nãy mình nói nhầm, Sorry.
\(\frac{x+1}{97}+\frac{x+1}{98}=\frac{x+1}{99}+\frac{x+1}{100}\)
\(=>\frac{x+1}{97}+\frac{x+1}{98}-\frac{x+1}{99}-\frac{x+1}{100}=0\)
\(=>\left(x+1\right).\left(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{97}>\frac{1}{98}>\frac{1}{99}>\frac{1}{100}\)
Nên \(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\) khác 0
=>x+1=0
=>x=-1
Vậy x=-1
Áp dụng công thức k/n*m=k/n-k/m trong đó n-m=k hoặc m-n=k
thế vào ta có
A=1/2*3+1/4*5+...+1/98*99
tớ biết tới đó thôi để từ từ tớ suy nghĩ rồi trả lời cho
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
\(\frac{99}{98}-\frac{98}{97}-\frac{1}{97x98}\)
\(=\frac{99}{98}-\frac{98}{97}-\left(\frac{1}{97}-\frac{1}{98}\right)\)
\(=\frac{99}{98}-\frac{98}{97}-\frac{1}{97}+\frac{1}{98}=\left(\frac{99}{98}+\frac{1}{98}\right)+\left(-\frac{98}{97}-\frac{1}{97}\right)\)
\(=\frac{100}{98}-\frac{99}{97}=-\frac{1}{4753}\)