Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2-\left(x+3\right)\left(x-3\right)\left(x^2+9\right)=\left(x-3\right)^2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)\left(x^2+9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left[\left(x-3\right)\left(x+3\right)-x^2+9\right]=\left(x-3\right)\left(x+3\right)\left[x^2-9-x^2-9\right]=\left(x-3\right)\left(x+3\right)\cdot\left(-18\right)\)
\(=-18\left(x+3\right)\left(x-3\right)\)
\(=\dfrac{-x^2-2x+3+x^2+x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)
\(\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{x^2-9}\)
ĐKXĐ : \(x\ne\pm3\)
\(=\frac{4}{x-3}+\frac{5}{x+3}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{5\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12}{\left(x+3\right)\left(x-3\right)}+\frac{5x-15}{\left(x+3\right)\left(x-3\right)}-\frac{13-9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{4x+12+5x-15-13+9x^2}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{9x^2+9x-16}{\left(x+3\right)\left(x-3\right)}=\frac{9x^2+9x-16}{x^2-9}\)
\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8+7-x^3+3x^2-3x+1\)
\(=\left(x^3-x^3\right)+\left(7+1-8\right)+3x^2-3x\)
\(=3x^2-3x=3x\left(x-1\right)\)
\(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(2+x\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=4x-x^3+\left(x^3+9\right)\)
\(=4x-\left(x^3-x^3\right)+9\)
\(=4x+9\)
\(\frac{6}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x}{x-3}+\frac{x}{x+3}\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x+5x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)
\(\frac{6x}{x^2-9}+\frac{5x}{x-3}+\frac{x}{x+3}\left(x\ne\pm3\right)\)
\(=\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{5x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x+5x^2+15x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{6x^2+18x}{\left(x-3\right)\left(x+3\right)}=\frac{6x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{6x}{x-3}\)
a: \(=x^2+2x-8-x^2-2x-1=-9\)
b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a) \(\dfrac{2x}{x^2-6x+9}+\dfrac{x-2}{x-3}\) (ĐK: \(x\ne3\))
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{x-2}{x-3}\)
\(=\dfrac{2x}{\left(x-3\right)^2}+\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\dfrac{2x+x^2-2x-3x+6}{\left(x-3\right)^2}\)
\(=\dfrac{x^2-3x+6}{x^2-6x+9}\)
b) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)