Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
a) 6x2 - 12x
= 6x(x - 2)
b) x2 + 2x + 1 - y2
= (x2 + 2x + 1) - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
c) x + y + z + x2 + xy + xz
= (x + x2) + (y + xy) + (z + xz)
= x(1 + x) + y(1 + x) + z(1 + x)
= (x + y + z)(x + 1)
d) xy + xz + y2 + yz
= (xy + xz) + (y2 + yz)
= x(y + z) + y(y + z)
= (x + y)(x + z)
e) x3 + x2 + x + 1
= (x3 + x2) + (x + 1)
= x2(x + 1) + (x + 1)
= (x2 + 1)(x + 1)
f) xy + y - 2x - 2
= (xy + y) - (2x + 2)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
g) x3 + 3x - 3x2 - 9
= (x3 - 3x2) + (3x - 9)
= x2(x - 3) + 3(x - 3)
= (x2 + 3)(x - 3)
h) x2 - y2 - 2x - 2y
= (x2 - y2) - (2x + 2y)
= (x + y)(x - y) - 2(x + y)
= (x + y)(x - y - 2)
i) 7x2 - 7xy - 5x = 5y
mk thấy con này sai sai ý
\(a,=4x^2-4x+1-4x^2+4-x^2-x+6=-x^2-5x+11\\ b,=8x^3+27-8x^3+72x=72x+27\)
\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
a: \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)
\(=\dfrac{5xy+y^3-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}=\dfrac{x^3+y^3}{x^2y^2}\)
b: \(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x^2-3x}\)