K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)

\(=\dfrac{5xy+y^3-x\left(5y-x^2\right)}{x^2y^2}\)

\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}=\dfrac{x^3+y^3}{x^2y^2}\)

b: \(\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+9x-3x+9}{x\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x^2-3x}\)

 

31 tháng 10 2021

Bài 3: 

a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)

b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)

c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

1 tháng 11 2017

a) 6x2 - 12x

= 6x(x - 2)

b) x2 + 2x + 1 - y2

= (x2 + 2x + 1) - y2

= (x + 1)2 - y2

= (x + 1 - y)(x + 1 + y)

c) x + y + z + x2 + xy + xz

= (x + x2) + (y + xy) + (z + xz)

= x(1 + x) + y(1 + x) + z(1 + x)

= (x + y + z)(x + 1)

d) xy + xz + y2 + yz

= (xy + xz) + (y2 + yz)

= x(y + z) + y(y + z)

= (x + y)(x + z)

e) x3 + x2 + x + 1

= (x3 + x2) + (x + 1)

= x2(x + 1) + (x + 1)

= (x2 + 1)(x + 1)

f) xy + y - 2x - 2

= (xy + y) - (2x + 2)

= y(x + 1) - 2(x + 1)

= (y - 2)(x + 1)

g) x3 + 3x - 3x2 - 9

= (x3 - 3x2) + (3x - 9)

= x2(x - 3) + 3(x - 3)

= (x2 + 3)(x - 3)

h) x2 - y2 - 2x - 2y

= (x2 - y2) - (2x + 2y)

= (x + y)(x - y) - 2(x + y)

= (x + y)(x - y - 2)

i) 7x2 - 7xy - 5x = 5y

mk thấy con này sai sai ý

1 tháng 11 2017

à câu í là :7x^2-7xy-5x+5y đấy bạn

30 tháng 10 2021

\(a,=4x^2-4x+1-4x^2+4-x^2-x+6=-x^2-5x+11\\ b,=8x^3+27-8x^3+72x=72x+27\)

30 tháng 10 2021

a) \(=4x^2-4x+1-4\left(x^2-1\right)-\left(x^2-2x+3x-6\right)=4x^2-4x+1-4x^2+4-x^2-x+6=-x^2-5x+11\)

b) \(=8x^3+27-8x\left(x^2-9\right)=8x^3+27-8x^3+72x=72x+27\)

12 tháng 9 2023

\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)

Bài 4:

1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)

=>\(x^3-1-x^3-6x=11\)

=>-6x-1=11

=>-6x=11+1=12

=>\(x=\dfrac{12}{-6}=-2\)

2: \(16x^2-\left(3x-4\right)^2=0\)

=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)

=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)

=>(x+4)(7x-4)=0

=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)

3: \(x^3-x^2-3x+3=0\)

=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)

=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-3\right)=0\)

=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))

=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)

=>\(x^2+4x+4=x^2-1\)

=>4x+4=-1

=>4x=-5

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)

\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)

=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)

=>3x+1=0

=>3x=-1

=>\(x=-\dfrac{1}{3}\left(nhận\right)\)

6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)

=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)

=>\(\dfrac{-x-3}{x}=1\)

=>-x-3=x

=>-2x=3

=>\(x=-\dfrac{3}{2}\left(nhận\right)\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số