\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}...\frac{30}{62}.\frac{31}{64}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

25 tháng 4 2018

1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên 

nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0

nên x=0,y=-1

thay x,y vào rồi tính C

25 tháng 4 2018

ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)

do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)

\(\Rightarrow14x>0\)\(\Rightarrow x>0\)

khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x

\(\Rightarrow9x+45=14x\)

\(\Rightarrow45=5x\)

\(\Rightarrow x=9\)

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

9 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)

Xét 2 trường hợp:

  • TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)

\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)

  • TH2: a + b + c \(\ne\) 0

Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)

 

9 tháng 11 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}=1\)

a+b-c=c

2c=a+b

=>\(\frac{b+c-a}{a}=1\)

b+c-a=a

2a=b+c

=>\(\frac{c+a-b}{b}=1\)

c+a-b=b

=>c+a=2b

ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)

=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

11 tháng 2 2020

1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100

= 3x(3 + 32 + ... + 3100

= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 3+ 38) + ... + (397 398 + 399 + 3100)]

= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]

= 3x(120 + 34.120 + .... + 396.120)

= 3x.120.(1 + 34 + .... + 396)

=> \(M⋮120\)(ĐPCM)

2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Nếu a + b + c = 0

=> a + b = - c

b + c = -a

c + a = -b

Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)

Vậy nếu a + b + c = 0 thì P = -3

nếu a + b + c  \(\ne\)0 thì P = 6

11 tháng 2 2020

Ta có : 

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

Vì \(120⋮120\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)