Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
b) \(=\left(y^2-9\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=y^4-81-y^4+4\)\(=-77\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a: \(A=\dfrac{2}{xy}:\left(\dfrac{y-x}{xy}\right)^2-\left(\dfrac{x^2+y^2}{\left(x-y\right)^2}\right)\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}=-1\)
2:
\(P=\dfrac{\left(5x+3\right)^2}{3x-2}\cdot\dfrac{\left(3x-2\right)\left(3x+2\right)}{5x+3}=\left(5x+3\right)\left(3x+2\right)\)
a) \(18x^4y^3:12\left(-x\right)^3y\)
\(=\left(18:-12\right)\left(x^4:x^3\right)\left(y^3:y\right)\)
\(=-\dfrac{3}{2}xy^2\)
b) \(x^2y^2-2xy^3:\dfrac{1}{2}xy^2\)
\(=\dfrac{xy^2\left(x-2y\right)}{\dfrac{1}{2}xy^2}\)
\(=\dfrac{x-2y}{\dfrac{1}{2}}\)
\(=2x-4y\)
a: \(=\dfrac{5}{2x^2y}+\dfrac{2}{3xy}-\dfrac{y}{x^3}\)
\(=\dfrac{5\cdot3\cdot x}{6x^3y}+\dfrac{2\cdot2\cdot x^2}{6x^3y}-\dfrac{6y^2}{6x^3y}\)
\(=\dfrac{15x+4x^2-6y^2}{6x^3y}\)
b: \(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)
c: \(=\dfrac{x^4-1-x^4+3x^2}{x^2-1}=\dfrac{3x^2-1}{x^2-1}\)
a: \(\left(y-\dfrac{x}{y}\right)\left(y^2+x+\dfrac{x^2}{y^2}\right)\)
\(=\left(y-\dfrac{x}{y}\right)\left(y^2+y\cdot\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\)
\(=y^3-\left(\dfrac{x}{y}\right)^3=y^3-\dfrac{x^3}{y^3}=\dfrac{y^6-x^3}{y^3}\)
b: \(P=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{x}{y}+\dfrac{1}{4}\right)\)
\(=x^3+\dfrac{x^2}{y}+\dfrac{1}{4}x-\dfrac{1}{2}x^2-\dfrac{x}{2y}-\dfrac{1}{8}\)