K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(\dfrac{11}{15}.\dfrac{12}{13}+\dfrac{8}{15}+\dfrac{11}{15}.\dfrac{14}{13}\)

\(=\dfrac{11.12+11.14}{15.13}+\dfrac{8}{15}\)

\(=\dfrac{11.26}{15.13}+\dfrac{8}{15}\)

\(=\dfrac{11.2}{15}+\dfrac{8}{15}\)

\(=\dfrac{22+8}{15}\)

\(=2\)

30 tháng 10 2023

a) A = 15/12 + 5/13 + (-3/12) + (-18/13)

= (15/12 - 3/12) + (5/13 - 18/13)

= 1 - 1

= 0

b) B = 11/15 . (-19/13) + (-7/13) . 11/15

= 11/15.(-19/13 - 7/13)

= 11/15 . (-2)

= -22/15

c) C = 2022⁰ - (1/7)⁵ . 7⁵

= 1 - 1/7⁵ . 7⁵

= 1 - 1

= 0

28 tháng 10 2023

\(\dfrac{11}{8}\cdot\left[\left(-\dfrac{5}{11}:\dfrac{13}{8}-\dfrac{5}{11}:\dfrac{13}{15}\right)+\dfrac{-6}{33}\right]+\dfrac{-3}{4}\)

\(=\dfrac{11}{8}\cdot\left[\left(-\dfrac{5}{11}\cdot\dfrac{8}{13}-\dfrac{5}{11}\cdot\dfrac{15}{13}\right)-\dfrac{2}{11}\right]-\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\left[-\dfrac{5}{11}\cdot\left(\dfrac{8}{13}+\dfrac{15}{13}\right)-\dfrac{2}{11}\right]-\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\left(-\dfrac{5}{11}\cdot\dfrac{23}{13}-\dfrac{2}{11}\right)-\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\left(-\dfrac{115}{143}-\dfrac{2}{11}\right)-\dfrac{3}{4}\)

\(=\dfrac{11}{8}\cdot\dfrac{-141}{143}-\dfrac{3}{4}\)

\(=-\dfrac{141}{104}-\dfrac{3}{4}\)

\(=-\dfrac{219}{104}\)

22 tháng 11 2022

\(\Leftrightarrow\left(\dfrac{x-9}{11}+1\right)+\left(\dfrac{x-10}{12}+1\right)+\left(\dfrac{x-11}{13}+1\right)=\left(\dfrac{x-12}{14}+1\right)+\left(\dfrac{x-28}{15}+2\right)\)

=>x+2=0

=>x=-2

23 tháng 8 2021

7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)

Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)

\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

 

23 tháng 8 2021

4) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)

\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)

\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)

\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)

6) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)

\(\dfrac{x+11}{13}=1\Rightarrow x=2\)

\(\dfrac{y+12}{13}=1\Rightarrow y=1\)

\(\dfrac{z+13}{15}=1\Rightarrow z=2\)

7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)

\(\Rightarrow x=4k,y=5k\)

\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)

\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)

Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)

a: \(=\left(\dfrac{5}{15}-\dfrac{12}{9}\right)+\left(\dfrac{14}{15}+\dfrac{11}{25}\right)+\dfrac{2}{7}\)

\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{70+33}{75}+\dfrac{2}{7}\)

\(=-1+\dfrac{2}{7}+\dfrac{103}{75}=\dfrac{-5}{7}+\dfrac{103}{75}=\dfrac{346}{525}\)

b: \(4\cdot\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\)

\(=4\cdot\dfrac{-1}{8}+\dfrac{1}{2}=\dfrac{-1}{2}+\dfrac{1}{2}=0\)

c: \(\dfrac{10^3+5\cdot10^2+5^3}{6^3+3\cdot6^2+3^3}=\dfrac{5^3\cdot8+5\cdot5^2\cdot2^2+5^3}{3^3\cdot2^3+3\cdot2^2\cdot3^2+3^3}\)

\(=\dfrac{5^3\left(8+4+1\right)}{3^3\left(8+4+1\right)}=\dfrac{125}{27}\)

e: \(\dfrac{2^8\cdot9^2}{6^4\cdot8^2}=\dfrac{2^8\cdot3^4}{3^4\cdot2^4\cdot2^6}=\dfrac{1}{4}\)

\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)

\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)

=1/64

 

20 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+1\right)\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

20 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)

<=> \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}-\dfrac{x+1}{14}-\dfrac{x+1}{15}=0\)

<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

Do: \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{14}>0\) nên x + 1 = 0

Vậy x = -1