\(\dfrac{7x+6}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2022

a. \(3x\left(2x+1\right)=6x^2+3x\)

b. \(\left(12x^3-18x^2+6x\right):6x=2x^2-3x+1\)

 

c. \(\dfrac{7x+6}{5x-1}+\dfrac{8x-9}{5x-1}=\dfrac{15x-3}{5x-1}=\dfrac{3\left(5x-1\right)}{5x-1}=3\)

19 tháng 1 2022

\(a.3x\left(2x+1\right)\\ =6x^2+3x\)

\(b.\left(12x^3-18x^2+6x\right):6x\\ =2x^2-3x+1\)

\(c.\dfrac{7x+6}{5x-1}+\dfrac{8x-9}{5x-1}=\dfrac{7x+6+8x-9}{5x-1}=\dfrac{15x-3}{5x-1}=\dfrac{3\left(5x-1\right)}{5x-1}=3\)

5 tháng 8 2017

1. \(A=\dfrac{4\left(2x-1\right)}{1^3-8x^3}\)=\(\dfrac{4\left(2x-1\right)}{-\left(2x-1\right)\left(4x^2+2x+1\right)}\) = \(\dfrac{4}{-4x^2-2x-1}\)

2. \(B=\dfrac{2x\left(x+3\right)}{x^3+3x^2+4x^2+12x}\)=\(\dfrac{2x\left(x+3\right)}{x^2\left(x+3\right)+4x\left(x+3\right)}\)=\(\dfrac{2x\left(x+3\right)}{\left(x^2+4x\right)\left(x+3\right)}\)=\(\dfrac{2x}{x^2+4x}=\dfrac{2x}{x\left(x+4\right)}=\dfrac{2}{x+4}\)

12 tháng 7 2017

a, \(\dfrac{4x^2-8xy}{10y-5x}=\dfrac{4x\left(x-2y\right)}{5\left(2y-x\right)}=\dfrac{-4x}{5}\)

b, \(\dfrac{\left(x-2\right)^2-1}{x^2-6x+9}=\dfrac{\left(x-2-1\right)\left(x-2+1\right)}{\left(x-3\right)^2}\)

\(=\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)^2}=\dfrac{x-1}{x-3}\)

c, \(\dfrac{x^2+8x+16}{x^2-16}=\dfrac{\left(x+4\right)^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\)

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

a: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{y\left(x-y\right)}=\dfrac{x+2x-y}{y\left(x-y\right)}=\dfrac{3x-y}{y\left(x-y\right)}\)

b: \(=\dfrac{x\left(x+3\right)}{\left(x+3\right)^2}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x+3}+\dfrac{3}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2-3x+3x+9-6x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)

c: \(=\dfrac{x+9}{\left(x-3\right)\left(x+3\right)}-\dfrac{3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+9x-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x^2+9x-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+3}{x-3}\)

d: \(=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

a)

\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)

\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)

\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)

b) ĐK: \(x\neq \pm 1\)

\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)

\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)

\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)

\(=\frac{2(x-1)}{3(x+1)}\)

7 tháng 1 2019

Cảm ơn bn nhahaha