K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.

3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.

4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )

5) \(x^3=x\Leftrightarrow x=\pm1\)

8 tháng 8 2017

bạn viết có thánh đọc ra á :v

8 tháng 8 2017

Bạn viết như vậy vẫn nhìn đc nhưng nhìn hơi khó

14 tháng 9 2021

c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)

\(=x^3y^3+5xy^2-x^2y-5\)

d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)

\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)

\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)

\(=16x^4+4x^2-4x-1\)

14 tháng 9 2021

Bài 9

a)\(\left(x+3\right)\left(x+4\right)\)                               b)\(\left(x-4\right)\left(x^2+4x+16\right)\)

\(=x^2+4x+3x+12\)                         \(=\left(x-4\right)\left(x^2+x.4+4^2\right)\)

\(=x^2+7x+12\)                                  \(=x^3-4^3=x^3-64\)

2: \(N=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)

\(=-13ab+2a+b-2\)

\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)

\(=\dfrac{39}{2}+1-3-2=\dfrac{39}{2}-4=\dfrac{31}{2}\)

3: \(P=4x^2-25-4x^2-4x-1=-4x-26\)

=-8020-26=-8046

4: \(Q=\left(y^2-9\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)

\(=y^4-81-y^4+4=-77\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

28 tháng 8 2023

1) \(3x\left(x-1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(3x+5\right)\)

2) \(4x(x-2y)-8y(2y-x)\)

\(=4x\left(x-2y\right)+8y\left(x-2y\right)\)

\(=\left(4x+8y\right)\left(x-2y\right)\)

\(=4\left(x+2y\right)\left(x-2y\right)\)

3) \(a^2\left(x-1\right)+b^2\left(1-x\right)\)

\(=a^2\left(x-1\right)-b^2\left(x-1\right)\)

\(=\left(a^2-b^2\right)\left(x-1\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-1\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)\)

\(=3x\left(x-a\right)-4a\left(x-a\right)\)

\(=\left(x-a\right)\left(3x-4a\right)\)

5) \(5x\left(x-y\right)^2+10y^2\left(y-x\right)^2\)

\(=5x\left(x-y\right)^2+10y^2\left(x-y\right)^2\)

\(=\left(5x+10y^2\right)\left(x-y\right)^2\)

\(=5\left(x+2y^2\right)\left(x-y\right)^2\)

6) \(3x\left(x-3\right)^2+9\left(3-x\right)^2\)

\(=3x\left(x-3\right)^2+9\left(x-3\right)^2\)

\(=\left(3x+9\right)\left(x-3\right)^2\)

\(=3\left(x+3\right)\left(x-3\right)^2\)

7) \(x\left(m-a\right)^2-y\left(a-m\right)^2\)

\(=x\left(a-m\right)^2-y\left(a-m\right)^2\)

\(=\left(x-y\right)\left(a-m\right)^2\)

8) \(6y^2\left(x-1\right)^2+9y\left(1-x\right)^2\)

\(=6y^2\left(x-1\right)^2+9y\left(x-1\right)^2\)

\(=\left(6y^2+9x\right)\left(x-1\right)^2\)

\(=3\left(2y^2+3x\right)\left(x-1\right)^2\)

#Ayumu