Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\frac{-1}{6}+\frac{5}{-12}\right)+\frac{7}{12}=\left(\frac{-2}{12}+\frac{-5}{12}\right)+\frac{7}{12}=\left(\frac{-7}{12}\right)+\frac{7}{12}=0\)
b)\(\frac{7}{36}-\frac{8}{-9}+\frac{-2}{3}=\frac{7}{36}+\frac{32}{36}-\frac{24}{36}=\frac{15}{36}=\frac{5}{12}\)
c) \(\frac{3}{5}-\frac{2}{5}.\frac{10}{12}=\frac{3}{5}-\frac{2}{5}.\frac{5}{6}=\frac{3}{5}-\frac{1}{3}=\frac{9}{15}-\frac{5}{15}=\frac{4}{15}\)
d) \(\frac{2}{\left(-3\right)^2}+\frac{5}{-13}-\frac{-3}{4}=\frac{2}{9}-\frac{5}{13}+\frac{3}{4}=\frac{8}{36}-\frac{15}{36}+\frac{27}{36}=\frac{5}{9}\)
\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)
\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)
a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)
=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )
=> \(14.\frac{27}{28}=\frac{419}{28}\)
b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)
bài 2 :
( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632
=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632
=> 211x + 22366 = 23632
=> 211x = 23632 - 22366
=> 211x = 1266
=> x = 1266 : 211
x = 6
Lời giải:
$\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}$
$< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}$
$=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}$
a. \(1\frac{5}{7}\)-\(\frac{9}{7}\)*\(\frac{16}{9}\)
=\(\frac{12}{7}\)-\(\frac{16}{7}\)
=\(\frac{-4}{7}\)
b. \(\frac{-5}{8}\):\(\frac{1}{4}\)-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=\(\frac{-5}{8}\cdot\)4-\(\frac{6}{13}\)*4+\(\frac{3}{8}\)
=4*(\(\frac{-5}{8}\)-\(\frac{6}{13}\))+\(\frac{3}{8}\)
=4*\(\frac{-113}{104}\)+\(\frac{3}{8}\)
=\(\frac{-113}{26}\)+\(\frac{3}{8}\)
=\(\frac{-413}{104}\)
c.( \(\frac{3}{8}\)+\(\frac{-1}{4}\)-\(\frac{5}{12}\)):\(\frac{1}{3}\)
=\(\frac{-7}{24}\)*3
=\(\frac{-7}{8}\)
Học tốt
Lớp 6 chưa được học cái này mà
\(a^{n^{n^n}}\)
Bạn EᑕSTᗩSY ᗰᗩTᕼ ơi, \(a^{n^{n^{...}}}\)là lũy thừa tầng, lớp 6 nâng cao mới học nhé!