Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\left(a-b-2\right)^2-\left(2a-2b\right)\left(a-b-2\right)+a^2-2ab+b^2\)
\(=\left(a-b\right)^2-4\left(a-b\right)+4+\left(a-b\right)^2-2\left(a-b\right)\left(a-b-2\right)\)
\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left[\left(a-b\right)^2-2\left(a-b\right)\right]\)
\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left(a-b\right)^2+4\left(a-b\right)\)
\(=4\)
b: \(\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)
\(=\left(2^{128}-1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)
\(=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)
\(=2^{512}-1+1=2^{512}\)
c: \(24\left(5^2+1\right)\left(5^4+1\right)\cdot...\cdot\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)
\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}\)
=-1
3(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)(264+1)
=(28-1)(28+1)(216+1)(232+1)(264+1)
=(216-1)(216+1)(232+1)(264+1)
=(232-1)(232+1)(264+1)
=(264-1)(264+1)
=(2128-1)
Nếu thấy đúng thì thích cho mình nha
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+2\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)
Ta có ; \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)
= ............................................................................................
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)
Giúp vs @@Phạm Hoàng GiangTrần Quốc LộcTrần Thị Hươnghattori heijiTRẦN MINH HOÀNGAn Nguyễn BáRibi Nkok NgokKien Nguyen
Trần Đăng NhấtHung nguyen
Sửa đề bài 1 : Rút gọn
a,\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right).........\left(2^{32}+1\right)-2^{64}\)
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)
\(\Rightarrow A=2^{64}-1\)
\(\Rightarrow B=2^{64}-1-2^{64}=-1\)
Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)
Thay 264 - 1 vào B, ta được :
\(2^{64}-1-2^{64}=-1\)
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow A=\left(2^8-1\right)...\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(\Rightarrow A=2^{64}-1-2^{64}\)
\(\Rightarrow A=-1\)
Vậy A = -1
\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^{16}\right)\left(1+x^{16}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^{32}\right)\left(1+x^{32}\right)\left(1+x^{64}\right)\)
\(=\left(1-x^{64}\right)\left(1+x^{64}\right)\)
\(=1-x^{128}\)
(2 + 1)(22 + 1)(24 + 1)...(232 + 1) - 264
= (2 - 1)(2 + 1)(22 + 1)(24 + 1)...(232 + 1) - 264
= (22 - 1)(22 + 1)(24 + 1)...(232 + 1) - 264
= (24 - 1)(24 + 1)...(232 + 1) - 264
= 264 - 1 - 264
= -1