K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

\(H=x^2\left(x+y\right)+2x\left(x^2+y\right)\)

\(=x^3+x^2y+2x^3+2xy\)

\(=3x^3+x^2y+2xy\)

Bậc của đa thức là bậc 3

Hệ số cao nhất của đa thức là hệ số 3

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

16 tháng 5 2022

đây là thu gọn à bn

 

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

Bài 1. Cho hai đa thức:P(x) = -x(3x - 4) - x3 + x2 + 3x4 - 1 và Q(x) = 3x4 - 2x + x2 (x - 1) - 1 - 2x3a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.b) Tìm bậc, hệ số tự do và hệ số cao nhất của P(x).c) Tính N(x) = P(x) + Q(x) và M(x) = P(x) - Q(x).d) Tìm nghiệm của đa thức M(x).Bài 2. Cho hai đa thứcP(x)...
Đọc tiếp

Bài 1. Cho hai đa thức:

P(x) = -x(3x - 4) - x3 + x2 + 3x4 - 1  Q(x) = 3x4 - 2x + x2 (x - 1) - 1 - 2x3

a) Thu gọn  sắp xếp các đa thức trên theo lũy thừa giảm dần của biến.

b) Tìm bậc, hệ số tự do  hệ số cao nhất của P(x).

c) Tính N(x) = P(x) + Q(x)  M(x) = P(x) - Q(x).

d) Tìm nghiệm của đa thức M(x).

Bài 2. Cho hai đa thức

P(x) = 2x2 - 3x3 + x2 + 3x3 - x - 1 - 3x  Q(x) = -3x2 + 2x3 - x - 2x3 - 3x - 2

a) Thu gọn  sắp xếp hai đa thức P(x) , Q(x) theo lũy thừa giảm dần của biến.

b) Tính F(x) = Q(x) - P(x)  G(x) = P(x) - Q(x).

c) Tính F(-2) , Q(3) .

d)  nh  G(x).(6x2 - 1) .

Bài 3. Cho hai đa thức

A(x) = 10x2 - 3x3 + 6x - 6x2 + 8x2 - 2x3  B(x) = 3x(x + 1) - 2(4 - x2 )

a) Thu gọn  sắp xếp hai đa thức A(x) , B(x) theo lũy thừa giảm dần của biến.

b) Tìm bậc, hệ số tự do  hệ số cao nhất của A(x).

c) Tính A(1) +B(-1).

d) Tính C(x) = A(x) : 2x .

e) Tìm nghiệm của đa thức B(x) .

giúp mikk gấp với ạ,mik cảm ơn

2
AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Bạn nên tách lẻ từng bài ra để được hỗ trợ tốt hơn, không nên đăng 1 loạt bài như thế này nhé.

2:

a: P(x)=3x^2-4x-1

Q(x)=-3x^2-4x-2

b:F(x)=-3x^2-4x-2-3x^2+4x+1=-6x^2-1

Q(x)=3x^2-4x-1+3x^2+4x+2=6x^2+1

c: F(-2)=-6*4-1=-25

Q(3)=-27-12-2=-41

8 tháng 5 2022

a)\(Q\left(x\right)=4x^3+x^2+\left(7x-2x\right)+\left(9-3\right)=4x^3+x^2+5x+6\)

hệ số tự do : 6

hệ số cáo nhất : 6

b) thay x = 2 vào Q(x) ta đa

\(Q\left(2\right)=4.2^3+2^2+5.2+6=4.8+4+10+6\)

\(Q\left(2\right)=32+4+10+6=52\)

8 tháng 5 2022

`a)`

`Q(x)=4x^3+7x+9+x^2-2x-3`

`Q(x)=4x^3+x^2+(7x-2x)+(9-3)`

`Q(x)=4x^3+x^2+5x+6`

     `@` Hệ số tự do: `6`

     `@` Hệ số cao nhất: `4`

_______________________________________

`b)` Thay `x=2` vào `Q(x)`. Có:

`Q(x)=4.2^3+2^2+5.2+6`

`Q(x)=32+4+10+6=52`

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm

Sửa đề: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

Ta có: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

\(=9x^4+2x^2-x-6\)

Ta có: \(Q\left(x\right)=2x^3-x^4-\dfrac{1}{2}x^2-3+\dfrac{3}{4}x-\dfrac{1}{3}x^2+x^4-\dfrac{7}{4}x\)

\(=2x^3-\dfrac{5}{6}x^2-x-3\)

a) Ta có: \(M\left(x\right)=3x^3+x^2+4x^4-x-3x^3+5x^4+2x^2-6\)

\(=\left(4x^4+5x^4\right)+\left(3x^3-3x^3\right)+\left(x^2+2x^2\right)-x-6\)

\(=9x^4+3x^2-x-6\)

Ta có: \(N\left(x\right)=-2x^2-x^4+4x^3-x^2-5x^3+3x+5+x\)

\(=-x^4+\left(4x^3-5x^3\right)+\left(-2x^2-x^2\right)+\left(3x+x\right)+5\)

\(=-x^4-x^3-3x^2+4x+5\)

c) Ta có: M(x)+N(x)

\(=9x^4+3x^2-x-6-x^4-x^3-3x^2+4x+5\)

\(=8x^4-x^3+3x-1\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)

`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`

`= x^2 - 8x + 23`

Hệ số cao nhất: `1`

Hệ số tự do: `23`

`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)

`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`

`= -x - 9`

Hệ số cao nhất: `-1`

Hệ số tự do: `-9`

`b)`

`N(x) - B(x) = A(x)`

`=> N(x) = A(x) + B(x)`

`=> N(x) = (x^2 - 8x + 23)+(-x-9)`

`= x^2 - 8x + 23 - x - 9`

`= x^2 - 9x + 14`

 

`A(x) - M(x) = B(x)`

`=> M(x) = A(x) - B(x)`

`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`

`= x^2 - 8x + 23 + x+9`

`= x^2 - 7x +32`

14 tháng 8 2023

a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17

           = 3x^2 + 6 - 12x - 2x^2 + 4x + 17

           = x^2 - 2x + 23

b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)

           = 3x^2 - 7x + 3 - 3x^2 + 6x - 12

           = -x + -9

A(x) = x^2 - 2x + 23

B(x) = -x - 9

Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.

Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.

b)

N(x) - B(x) = A(x)

N(x) - (-x - 9) = x^2 - 2x + 23

N(x) + x + 9 = x^2 - 2x + 23

N(x) = x^2 - 3x + 14

Vậy, N(x) = x^2 - 3x + 14.

A(x) - M(x) = B(x)

x^2 - 2x + 23 - M(x) = -x - 9

x^2 - 2x + x + 9 + 23 = M(x)

x^2 - x + 32 = M(x)

Vậy, M(x) = x^2 - x + 32.