Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)
\(Q\left(x\right)=-3x^5+2x^2-2x+3\)
\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)
\(=x^4+2\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+4x-4\)
Thu gọn + sắp xếp luôn
P(x) = 3x5 + x4 - 2x2 + 2x - 1
Q(x) = -3x5 + 2x2 - 2x + 3
P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )
= ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )
= x4 + 2
P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - ( -3x5 + 2x2 - 2x + 3 )
= 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3
= ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )
= 6x5 + x4 - 4x2 + 4x - 4
c, x3-2x2+x=0
=> x(x-1)2=0
=>\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b,4x2-3x-7=(x+1)(4x-7)=0
=>\(\orbr{\begin{cases}x+1=0\\4x-7=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-1\\x=\frac{7}{4}\end{cases}}\)
Ta có: Q(-1) = -(-1)2 + a.(-1) = -1 - a
Q(1) = -12 + a.1 = -1 + a
Mà Q(-1) = 2Q(1)
=> -1 - a = 2.(-1 + a)
=> -1 - a = -2 + 2a
=> -1 + 2 = 2a + a
=> 1 = 3a
=>a = 1 : 3
=> a = 1/3
Vậy a = 1/3
xét f(x) = 2x - 4 = 0
=> 2x = 4
=> x = 2
xét g(x) = x^2 - ax + 2 = 0
=> g(2) = 2^2 - 2a + 2 = 0
=>6 - 2a = 0
=> 2a = 6
=> a = 3
vậy a = 3 để nghiệm của f(x) đồng thời là nghiệm của g(x)
Ta có f(x)=0
<=> 2x-4=0
<=> 2x=4
<=> x=2
Vậy x=2 là nghiệm của f(x)
Mà nghiệm của f(x) cũng là nghiệm của g(x)
=> g(2)=0
<=> 2^2-2a+2=0
<=>2a=6
<=>a=3
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
1B
2
-) 1/4
-) 4; -4