Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vị trí đầu tiên trùng nhau ứng với . Vậy vị trí trùng đầu tiên ứng với vân sáng bậc 32 của ánh sáng lục.
vậy đáp án C. 32
Khi các vân sáng trùng nhau: \(k_1\lambda_1=\) \(k_2\lambda_2=\)\(k_3\lambda_3\)
k10,64 = k20,54 = k30,48 <=> 64k1 = 54k2 = 48k3 <=> 32k1 = 27k2 = 24k3
BSCNN(32,27,24) = 864
=> k1 = 27 ; k2 = 32 ; k3 = 36
Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda\)1 trùng bậc 32 của \(\lambda\)2 trùng với bậc 36 của \(\lambda\)3
Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36
\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)
\(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)
\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\)
Vậy vị trí này có:
k1 = kđỏ = 27 (ứng với vân sáng bậc 27)
k2 = klục = 32(ứng với vân sáng bậc 32)
k3 = klam = 36(ứng với vân sáng bậc 36)
Đáp án C
Tóm tắt:
\(a=10^{-3}m\)
\(D=0,5m\)
\(\lambda_1=0,64\mu m\)
\(\lambda_2=0,6\mu m\)
\(\lambda_3=0,54\mu m\)
\(\lambda_4=0,48\mu m\)
\(\Delta x=?\)
Giải:
Khi vân sáng trùng nhau:
\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\) \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)
\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\) \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)
\(\Leftrightarrow k_132=k_230=k_327=k_424\)
BSCNN( 32;30;27;24 ) = 4320
\(k_1=\frac{4320}{32}=135\)
\(k_2=\frac{4320}{30}=144\)
\(k_3=\frac{4320}{27}=160\)
\(k_4=\frac{4320}{24}=180\)
Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)
\(\rightarrow D\)
Khi các vân sáng trùng nhau: \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)
k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3
BSCNN(4,5,6) = 60
\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)
Trong khoảng giữa phải có: Tổng số VS tính toán = 14 + 11 + 9 = 34
Ta xẽ lập tỉ số cho tới khi k1 = 15 ; k2 = 12 ; k3 = 10
- Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)
Như vậy: Trên đoạn từ vân VSTT đến k1 = 15 ; k2 = 12 thì có tất cả 4 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k1 = 5 ; k2 = 4
Vị trí 3: k1 = 10 ; k2 = 8 => Trong khoảng giữa có 2 vị trí trùng nhau.
Vị trí 4: k1 = 15 ; k2 = 12
- Với cặp\(\lambda_2;\lambda_3:\) \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)
Như vậy: Trên đoạn từ vân VSTT đến k2 = 12 ; k3 = 10 thì có tất cả 3 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k2 = 6 ; k3 = 5 \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.
Vị trí 3: k2 = 12 ; k3 = 10
- Với cặp \(\lambda_1;\lambda_3:\) \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)
Như vậy: Trên đoạn từ vân VSTT đến k1 = 15 ; k3 = 10 thì có tất cả 6 vị trí trùng nhau
Vị trí 1: VSTT
Vị trí 2: k1 = 3 ; k3 = 2
Vị trí 3: k1 = 6 ; k3 = 4
Vị trí 4: k1 = 9 ; k3 = 6 \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.
Vị trí 5: k1 = 12 ; k3 = 8
Vị trí 6: k1 = 15 ; k3 = 10
Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.
Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau = 34 – 7 = 27 vân sáng.
\(\rightarrow D\)
Đáp án C
Vị trí của vân sáng màu đỏ bậc 2 (k = 2) là:
Vị trí của vân sáng màu lục bậc 5 (k = 5) là:
Khoảng cách từ vân sáng màu đỏ bậc 2 đến vân sáng màu lục bậc 5 (cùng phía so vói sáng vân trung tâm) là:
∆ X = X l 5 - X d 2 = 1 , 44 - 0 , 84 = 0 , 6 ( m m )
Đáp án A
Vị trí của vân sáng màu đỏ bậc 2:
Vị trí của vân sáng màu lục bậc 5:
Khoảng cách từ vân sáng màu đỏ bậc 2 đến vân sáng màu lục bậc 5 nằm cùng phía đối với vân trung tâm là:
∆ x = x d 2 - x l 5 = 1,44 - 0,912 = 0,528mm
Đáp án B
+ Điều kiện để hai hệ vân trùng nhau
x 1 = x 2 ⇔ k 1 k 2 = λ 2 λ 1 = 560 720 = 7 9
Tại M là vân sáng trùng màu với vân trung tâm, giữa M và vân trung tâm còn một vân sáng nữa có màu như vậy → M là vân sáng bậc 14 của bức xạ λ 1 và là vân sáng bậc 18 của bức xạ λ 2
+ Tại vị trí ban đầu D = 2 m, sau một phần tư chu kì màn dao động đến vị trí D ' = 1 m, vì tọa độ M là không đổi, D giảm một nửa nên bậc của vân sáng tăng lên gấp đôi, vậy tại M bây giờ là vị trí vân sáng bậc 28 của λ 1 và bậc 36 của λ 2
+ Khi vật dịch chuyển từ vị trí ban đầu D = 2m đến vị trí D = 2 + 1 = 3 m, tương tự ta cũng xác định được tại M bây giờ là vị trí gần vân sáng bậc 10 của λ 1 và vân sáng bậc 12 của λ 2
Với thời gian 4 s là một chu kì thì số vân đơn sắc dịch chuyển qua M là : N = 2(4 + 12 + 6 + 16) = 75.
Ta trừ 1 ở đây là do điểm 12 nằm ở biên nên khi màn dao động chỉ đi qua 1 lần
Khi các vân sáng trùng nhau: \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)
\(k_10,64=k_20,54=k_30,48\Leftrightarrow64k_1=54k_2=48k_3\Leftrightarrow32k_1=27k_2=24k_3\)
\(BSCNN\left(32,27,24\right)=864\Rightarrow k_1=27;k_2=32;k_3=36\)
Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda_1\) trùng bậc 32 của\(\lambda_2\) trùng với bậc 36 của \(\lambda_3\)
Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36
\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)
\(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)
\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\)
Vậy vị trí này có:
\(k_1=k_{đỏ}=27\) (ứng với vân sáng bậc 27)
\(k_2=k_{lục}=32\) (ứng với vân sáng bậc 32)
\(k_3=k_{lam}=36\) (ứng với vân sáng bậc 36)
\(\rightarrow\)C