Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ \(\hept{\begin{cases}x< 1\\y< 6\end{cases}}\)ta có: \(\hept{\begin{cases}2x+y< 8\\3x+2y< 15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3m+1< 8\\2m-3< 15\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{7}{3}\\m< 9\end{cases}}\Rightarrow m< \frac{7}{3}\)
Vậy hệ phương trình thỏa mãn khi m<7/3
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
tìm m để hệ phương trình có nghiệm
\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y+2}=3\\x+y=2m\end{cases}}\)
Không phải thế :
Để phương trình có 2 nghiệm lớn hơn 2
<=> \(x_1>2;x_2>2\)
<=> \(\hept{\begin{cases}x_1+x_2>4\\\left(x_1-2\right)\left(x_2-2\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1+x_2>4\\x_1.x_2-2\left(x_1+x_2\right)+4>0\end{cases}}\)
hay \(\hept{\begin{cases}2m>4\\2m-3-2.2m+4>0\end{cases}}\)<=> \(\hept{\begin{cases}m>2\\1-2m>0\end{cases}}\)vô lí
=> không tồn tại m
Tuy nhiên đề này thì phương trình không có nghiệm đâu nhé.
Tính đenta rõ ràng <0
Cj ơi bài này em có giải r. Cách của em khác biểu điểm nhưng kq vẫn đúng. Thanks cj nhiều